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Genetic Effects of Impure and Pure Saccharin in Yeast 

Abstract. Yeast cells were grown in media containing impure or purified saccharin 
preparations. Dose-dependent increases in frequencies of cells possessing aberrant 
cell morphologies were revealed by light microscopy. At each test dose, cells grown 
in impure saccharin exhibited up to sevenfold higher frequencies of mitotic crossing- 
over or gene conversion in three of four assays for genetic recombination than cells 
grown in purified saccharin from the same lot. With one exception, the sweetener 
produced by the Maumee process caused larger increases in recombination and gene 
reversion than the sweetener produced by the Remsen-Fahlberg process. The several 
test markers did not respond equally to any test saccharin. Cells grown in liquid 
media containing no saccharin or two of three test concentrations of saccharin pro- 
duced cell titers that were approximately equivalent. 
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The saccharin (lot S1022, Sherwin- 
Williams) that induced bladder cancer in 
two generations of rats (I) was produced 
by the Maumee process and contained 
impurities that, when highly concen- 
trated, were weakly mutagenic in some 
Salmonella test strains (2, 3). Both com- 
mercial S1022 saccharin and saccharin 
purified from the same lot did not cause 
mutagenic or other genetic alterations in 
several short-term tests (4, 5), including 
a mitotic recombination test in yeast D3 
(4) and widely used Salmonella assays 
(2, 4-6). In contrast, the same impure 
[organic solvent-soluble impurities, 10 to 
15 parts per million (ppm)] and partially 
purified saccharin (organic solvent-soluble 
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impurities, 1 to 5 ppm) increased fre- 
quencies of sister chromatid exchanges 
in both Chinese hamster ovary cells and 
human lymphocytes (4, 7), caused urines 
of saccharin-fed mice to be weakly muta- 
genic to Salmonella TA100 (6), caused 
weak mutagenic responses at the TK+/ 
TH- locus in mouse lymphoma L5178Y 
cells (4), and exhibited cocarcinogenic 
activity in C3H/10T1/2 mouse embryo 
cells in culture (8). There is also evi- 
dence that the same highly purified sac- 
charin from lot S1022 induces a variety 
of chromosome aberrations in Chinese 
hamster cells in culture (4). The National 
Academy of Sciences' Panel I for the 
Study of Saccharin and Its Impurities re- 
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Table 1. The saccharins used in our tests with yeast cells. Mutagenicity in Salmonella is in- 
dicated by: -, nonmutagenic; +, mutagenic; ++, very mutagenic. 

Mutagenicity in 
Sac- Production SourceSalmonella* 

char Lot No. method Source- 

charin purities 

A 65C-0129 Maumee Sigma - ++ 
B 191010 Remsen-Fahlberg HPBt - + 
C Purified 191010 Remsen-Fahlberg HPB - - 

*Mutagenicity of saccharin or concentrated organic solvent-soluble impurities for Salmonella typhimurium 
(2, 3). tHealth Protection Branch, Ottawa. 

cently concluded that saccharin itself- 
and not one or more of its associated im- 
purities-possesses carcinogenic poten- 
tial, although the panel acknowledged 
that absolutely pure saccharin has never 
been tested (5). 

We have tested the effects of impure 
and purified saccharin on mitotic inter- 
genic and intragenic recombination and 
reverse mutation in the yeast Saccharo- 
myces cerevisiae, and have compared the 
extents to which these genetic events are 
affected by impure saccharins produced 
by both the Remsen-Fahlberg (R-F) and 
Maumee processes (Table 1). These two 
major processes for producing com- 
mercial saccharin can result in final prod- 
ucts with distinct types and amounts of 
impurities. 

For this study, we used an impure 
preparation produced by the R-F process 
[Diawa (Japan) lot 191010, saccharin B] 
and saccharin purified from the same lot 
(saccharin C). Saccharin C is the purest 
sample ever prepared by the Toxicology 
Research Division, Health Protective 
Branch, Health and Welfare, Ottawa (3). 
Both preparations were nonmutagenic in 
the Salmonella -mammalian microsome 
test; the highly concentrated water-sol- 
uble impurities extracted from saccharin 
B were also nonmutagenic in this assay, 
but the highly concentrated extracts 
from this lot that were soluble in organic 
solvents were weakly mutagenic (2, 3). 

Saccharin produced by the Maumee 
process [Sigma, lot 65C-0129 (saccharin 
A)] was also nonmutagenic in the Salmo- 
nella test (3). The organic solvent-sol- 
uble impurities (10 to 15 ppm) extracted 
from this lot are mutagenic for S. typh- 
imnurium TA1538, but only when they are 
very highly concentrated (3). Since a 
large part of the water-soluble impurities 
cannot be extracted from this prepara- 
tion (3), we did not test purified saccha- 
rin A. 

It is important to note here that, in or- 
der to avoid bias in favor of recombinant 
or revertant cells, we made allowances 
for the fact that yeast cells grown in liq- 
uid complete media with and without 

1008 

sweetener grow at equal rates and under- 
go equal numbers of divisions. For each 
experiment, equal portions of a fresh 
suspension of yeast [diploid strain CM- 
1293 (9, 10)] were inoculated into 1 per- 
cent yeast extract, 2 percent peptone, 
and adenine sulfate (0.16 mg/ml) (YPA); 
this medium was made within 18 hours of 
being used and contained the test con- 
centrations of saccharins. Yeast cells 
grown in this medium to which we added 
0.005 or 0.1 percent ethyl methanesulfo- 
nate anesulfonate (Sigma; EMS) were 
used as positive controls. Genetic activi- 
ties in repeated experiments with fresh 
media were comparable, whereas ge- 
netic activities assayed with stored me- 
dia containing saccharin were always 
lower and frequently not reproducible. 
The mutagen, therefore, is labile. 

Yeast grew to nearly the same titers in 

108, 

0 mg/ml 
....... 2 mg/ml , 

107- - 20 mg/ml 
--100 mg/ml / 
---EMS (0.1%) / / 

105 / 

E10 / 

-v104- ' - 

0 12 24 36 48 60 72 

Time in media (hours) 
Fig. 1. Growth of yeast in 0, 2, 20, and 100 mg 
of (pure) saccharin C and 0.1 percent EMS 
per milliliter of medium. Cell titers at 0, 12, 
and 24 hours are based on cells plated and 
forming colonies on complete medium. Titers 
at 36, 48, 60, and 72 hours are based on hema- 
cytometer counts of cells. 

YPA containing, per milliliter, 0, 2, or 20 
mg of saccharin A, B, or C (Tables 2 and 
3). Figure 1 shows that the growth rates 
and final cell titers obtained from inocula 
of five cells per milliliter were almost 
equivalent by the early stationary phase 
(60 to 65 hours). With high concentra- 
tions (100 mg/ml) of saccharin A, B, or 
C, we used starting inocula of approxi- 
mately 500 cells per milliliter, because 
such concentrations inhibit growth (Fig. 
1). Colony-forming abilities of cells 
grown in the presence of the two lower 
test concentrations were similar for all 
three saccharins, though consistently 
less for cells grown in the presence of 
saccharin A than cells grown with sac- 
charins B and C (Tables 2 and 3). Since 
viabilities were high, it is unlikely that 
saccharin acted as a selective agent for 
severely damaged cells. 

Microscopic examinations of cells 
grown in the three saccharin concentra- 
tions revealed dose-dependent increases 
in the frequencies of cells with abnormal 
morphologies at the logarithmic and sta- 
tionary phases. Cultures grown in media 
containing saccharin A showed higher 
frequencies of aberrant types than those 
grown in media containing saccharin B, 
and cultures from saccharin B possessed 
higher frequencies of abnormal cell types 
than those grown in saccharin C. Such 
irregularly shaped and multiply budded 
cells were rarely observed in cultures 
grown in YPA without saccharin or with 
EMS. Spore formation was not observed 
in test cultures, but enhanced mutation 
frequencies in experiments with haploid 
cells grown in the presence of saccharin 
would corroborate our genetic data from 
diploids. 

Intergenic exchanges between homol- 
ogous chromosomes revealed by the for- 
mation of twin-sectored, pink-red colo- 
nies in the CM-1293 diploid strain (10- 
12), were 11 to 12 times more frequent in 
cells grown in the presence of the lowest 
(2 mg/ml) dose of impure saccharins, 
than in cells grown without saccharin 
(Tables 2 and 3). Half as many ex- 
changes occurred among cells grown in 
the same dose of saccharin C. Cells 
grown on media containing canavanine 
sulfate (100 Ag/ml) showed a second 
class of intergenic exchanges (13), and 
such cells formed colonies up to twice as 
frequently when grown with saccharin (2 
mg/ml) than without saccharin. In cul- 
tures grown with high saccharin concen- 
trations, we observed up to 100-fold in- 
creases in red-pink sectors and up to 40- 
fold increases in canavanine-resistant 
colonies. 

By monitoring the appearance of pro- 
totrophic colonies on selective media, 
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we found that TRP5 (14, 15) gene con- 
vertants increased twofold in the pres- 
ence of low (2 mg/ml) concentrations of 
each test saccharin and up to 25-fold 
with higher concentrations of saccharin 
A. With saccharin A and B, CYCI (16, 
17) gene convertants increased two- to 
fivefold with low (2 mg/ml) concentra- 
tions and up to 18-fold at high concentra- 
tions; in purified saccharin, three- to sev- 
enfold fewer convertants appeared. Re- 
verse mutations at the ilvl locus (15, 18) 
increased 2- to 30-fold. Other classes of 
aberrant colonies that could be scored 
visually as red, pink, or sectored, and in- 
dicating a variety of other genetic events 

tations, and mitotic gene conversion (9, 
13), also increased to this extent usually, 
but not always, as a function of dose. 
Our finding that all test markers did not 
respond equally to any of the three sac- 
charin preparations emphasizes the need 
for testing a variety of genetic effects, 
because of the possibility of encounter- 
ing site specificity. 

At all three concentrations, cells 
grown in the presence of saccharin B 
showed higher frequencies of mitotic 
crossing over or gene conversion in three 
of the four assays for the recombination 
than cells grown in saccharin C. With the 
exception of CYCI gene convertants, 

creases in both recombination and muta- 
tion than saccharins B and C, indicating 
the greater potential mutagenicity of sac- 
charin A. 

Differences between these studies 
with growing yeast cells and the two pre- 
vious (negative) tests of recombination 
in nongrowing yeast cells (4, 19) exposed 
to saccharin have been described else- 
where (20). 

From our data we conclude that the 
impurities (2, 3, 6, 21, 22) in saccharin 
caused some or all of the observed ge- 
netic effects. Even saccharin C is not en- 
tirely free of water-soluble impurities, 
and in all likelihood, entirely pure sac- 

such as deletions, aneuploidy, point mu- saccharin A usually caused larger in- charin probably cannot be made. Indeed, 

Table 2. Frequencies of genetic events in Saccharomyces cerevisiae strain CM-1293 (10) after growth in liquid saccharin containing saccharin B 
(impure) or saccharin C (purified from the same lot). Saccharins B and C were tested together. After incubation with aeration at 30?C for 60 and 65 
hours, the cells were harvested, washed twice, sonicated, pooled, and counted in a hemacytometer; several different dilutions of cells were then 
plated on synthetic complete media and media selective for recombinant and revertant cells (9). Colonies were counted and recombinant and 
revertant classes scored after incubation of plates at 30?C for periods of time appropriate for each type of medium (2 to 6 days). Data are 
representative of results obtained in four to eight experiments. Estimates of standard errors were omitted from this table to save space. 

Intragenic 
Mitotic intergenic recombination (crossovers) and recombination 
other aberrant colonies on nonselective medium (per 105 

Dose of (per 104 surviving cells) surviving Reverse 
saccharin Cell Via- cells)t mutation 

(mg/ml YPA) 
titer* 

bilityt (per 107 

(cell/mSec- surviving 
or ethyl methane- (%)cell biec- tored, cells)? 

suona 
Red- Pink 

thr Total can' TRP5 CYCI ILV+ 

pink red- 
pink 

Impure 
0 1.6 x 107 100 1.4 13 6.4 0 20.8 4.1 1.5 9.5 1.9 
2 1.3 x 107 90 16 35 15 0 66.0 5.1 3.5 49 3.7 

20 1.6 x 107 90 31 32 13 0 76.0 8.3 17 118 8 
100 2.1 x 106 76 143 163 48 54 408.0 32 4.4 81 31 
Pure 

2 1.2 x 107 100 8.7 5.6 4.1 0 18.4 7.1 3.0 7.4 5.9 
20 1.3 x 107 100 9.6 16 8.0 0 33.6 11 3.3 30 6.1 

100 1.5 x 106 90 112 72 7.6 64 255.6 74 1.2 25 4.1 
Ethyl methane- 

sulfonate 
0.005 percent 1.1 x 107 100 1.3 4 0 5.1 10.4 29 1.7 19 3.8 
0.1 percent 2.7 x 107 100 2.8 26 23 0.5 52.3 43 14 155 62 

*Determined by cell counts in hemacytometers. tFractions of cells plated that formed colonies. tMitotic gene convertants. ?Mitotic gene revertants. 

Table 3. Frequencies of genetic events in Saccharomyces cerevisiae strain CM-1293 after growth in saccharin-containing liquid media. Experi- 
mental procedures were as described in Table 2. Comparable results were obtained in ten experiments with strain CM-1293 and the diploid strain 
CM-1194 (8). 

Mitotic intergenic recombination (crossovers) and other Intragenic Reverse 
Cellr* aberrant colonies (per 103 surviving cells) recombina t (per 10mutaton 

YPA) (%) Sectored, Red Pink other than Total canr TRP5 CYCI cells)? 

Saccharin (2 mglml YPA) 
1.7 x 107 74 ? 8 30.0 ? 6 14.5 ? 3.2 2.0 ? 0.2 2.1 ? 0.35 48.6 ? 7.9 4.0 ? 0.9 15.2 ? 2.5 8.8 ? 3.0 8.5 ? 1.0 

Saccharin (20 mglml YPA) 
1.6 x 107 61 ? 8 42.1 ? 4.4 37.7 ? 6.2 10.9 + 3.0 1.8 ? 0.4 92.5 ? 9 11.0 ? 1.8 166.0 ? 18 30.1 ? 6 9.2 + 3.0 

Saccharin (100 mglml YPA) 
3.0 x 106 24 + 10 53 ? 10 31 + 5.1 9.8 + 2.8 5.9 + 2.4 99.7 + 12 82.0 ? 10.0 155.0 + 21 88.0 + 10 37.0 + 7.8 

*Determined by cell counts in hemacytometers. tFractions of cells plated that formed colonies. tMitotic gene convertants. ?Mitotic gene revertants. 
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impurities would have to be potent to ac- 
count for all the effects of saccharins A, 
B, and C, and thus, saccharin per se or 
one or more of its metabolites might 
cause the effects. 

The saccharins that humans consume 
in pharmaceutical products, beverages, 
and foods contain higher concentrations 
of impurities than the purified saccharin 
C used in our experiments, and thus 
could constitute a larger risk than pure 
sweetener. Moreover, since genetic and 
toxic effects of nutritional and other en- 
vironmental agents are cumulative, the 
contributions of repeated exposures to 
single compounds are difficult to assess, 
particularly when a carcinogen is labile 
or when additive or synergistic con- 
sequences of multiple agents result. 

CAROL W. MOORE 
ANN SCHMICK 

Department of Radiation Biology and 
Biophysics and Department of Biology, 
University of Rochester, 
Rochester, New York 14642 
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Adenocarcinoma of the stomach is one 
of the most important and frequent of hu- 
man cancers, and the demographic pat- 
terns of incidence suggest that its occur- 
rence is carcinogen-related. Many early 
attempts to develop experimental mod- 
els of carcinogen-induced gastric cancer 
in animals failed, or cancers developed 
only in the squamous portions (forestom- 
achs) of rodent stomachs (1). For ex- 
ample, in rodents the forestomach is a 
major target tissue for carcinogenesis 
by polycyclic aromatic hydrocarbons 
(PAH), whereas the glandular portions 
of the stomachs (the part most analogous 
anatomically to the human stomach) are 
highly resistant to these compounds (1). 
In contrast, glandular stomach tissue is 
highly susceptible to carcinogenesis by 
certain other kinds of compounds, such 
as N-methyl-N'-nitro-N-nitrosoguanidine 
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(MNNG) (2). It is probable that the co- 
valent interaction of the ultimate carcin- 

ogenic forms of these types of com- 

pounds with cellular macromolecules is 
a critical initiating event leading to the 

production of tumors. Reduced glutathi- 
one (GSH), an endogenous, nucleo- 

philic tripeptide, may markedly alter the 
macromolecular binding of these two 

types of carcinogens in opposite ways: 
GSH can inhibit macromolecular binding 
of carcinogenic PAH metabolites (3, 4), 
but on the other hand it may actually 
stimulate macromolecular alkylation by 
agents such as MNNG (5). Because of 
these differences, the relative concentra- 
tions of GSH in various portions of the 

gastrointestinal tract were of interest. 
We report here that the glandular gastric 
tissue of laboratory animals contains ex- 

ceedingly high concentrations of GSH, 
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Table 1. Treatments causing changes in GSH concentrations in glandular stomachs and livers of 
rats. Care of animals before the experiment was the same as that described in Fig. 1 legend. All 
measurements were made at 4 to 6 p.m.; appropriate control groups were run separately for 
each treatment. All animals for the cobaltous chloride experiment (including controls) were 
fasted 24 hours prior to and during the experiment. The values shown were calculated from 
determinations [using the modified Ellman procedure (7)] on groups of four to seven rats each. 
All GSH concentrations represented in the table were significantly different (P < .01) from the 
corresponding control concentrations (analyses by Student's t-test on the respective mean ab- 
sorbance values); S.E., standard error of the mean. 

Mean percentage of 
control GSH ? S.E. 

Treatment 
Liver Glandular Llver stomach 

Food deprivation (48 hours) 80 ? 4 70 ? 3 
Diethyl maleate 23? 10 27 ? 4 

(0.9 ml/kg, subcutaneous, 1 hour prior) 
Cold-restraint stress (4 hours) 76 ? 1 60 ? I 
Cobaltous chloride 190? 10 140 ? 9 

(45 mg/kg, subcutaneous, 15 hours prior) 
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High Concentrations of Glutathione in Glandular Stomach: 

Possible Implications for Carcinogenesis 

Abstract. In laboratory rodents, concentrations of reduced glutathione (GSH) are 
exceedingly high (up to 7 to 8 millimolar) in the glandular gastric tissue compared to 
concentrations in other portions of the gastrointestinal tract or to those of most other 
organs. Gastric GSH varies diurnally, with the highest levels occurring in the late 
afternoon or early evening. Starvation, treatment with diethyl maleate, or cold-re- 
straint stress all caused marked decreases in stomach GSH, whereas treatment with 
cobaltous chloride caused an increase in the GSH concentrations. The physiological 
significance of the high gastric GSH is unknown, but because this endogenous com- 
pound may strongly modulate (decrease or increase) the macromolecular binding of 
certain chemicals capable of inducing stomach tumors, the possible role of gluta- 
thione in the pathogenesis of chemically induced gastric cancer should be consid- 
ered. 
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