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GABA Receptors in Clonal Cell Lines: A Model for Study of

Benzodiazepine Action at Molecular Level

Abstract. A “‘receptor unit’’ for y-aminobutyric acid (GABA), which includes
brainlike receptor binding sites for tritium-labeled GABA and benzodiazepines
(diazepam, clonazepam, and flunitrazepam) and a thermostable endogenous protein
(GABA modulin) that inhibits both GABA and benzodiazepine binding, has been
demonstrated in membranes prepared from NB,, neuroblastoma and C6 glioma
clonal cell lines. In these cells, as in brain, diazepam (1 micromolar) prevents the

effect of GABA modulin, and in turn GABA (0.1 millimolar) increases the binding of

[*H]diazepam. The neuroblastoma and, to a lesser extent, the glioma cells represent
a suitable model to study the interactions and the sequence of membrane and intra-
cellular events triggered by the stimulation of benzodiazepine and GABA receptors.

In crude synaptic membranes pre-
pared from brain, benzodiazepines in-
crease the affinity of y-aminobutyric acid
(GABA) receptors by competing with an
endogenous thermostable protein. This
protein has been termed ‘‘GABA modu-
lin”’ because it allosterically modulates
the high-affinity binding of GABA to its
postjunctional receptor sites (/, 2). The
potency of several benzodiazepines in
competing with GABA modulin corre-
lates with their binding affinity for specif-
ic sites in crude synaptic membrane
preparations and with their in vivo abili-
ty to relieve anxiety (3). This relation-
ship has suggested that the action of ben-
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zodiazepines on GABA modulin repre-
sents a possible molecular mechanism
for their well-documented facilitatory ac-
tion on GABA transmission in vivo ).
Since GABA modulin could be released
from its storage sites in brain and bind to
synaptic membranes during homoge-
nization (/), it could not be concluded
from experiments with crude brain syn-
aptic membranes whether interaction
with GABA modulin accounts for ben-
zodiazepine modification of GABA re-
ceptors in vivo.

We now present evidence that mouse
neuroblastoma NB,, (NB) cells and rat
C6 glioma (C6) cells are an adequate

model for studying the supramolecular
organization of GABA receptors and for
monitoring the action of benzodiaze-
pines at the molecular level. For such
studies, an ideal cell line should contain
on its membrane: (i) the benzodiazepine
receptor, (ii) the GABA receptor regulat-
ing a Cl~ channel, and (iii)) GABA modu-
lin. Moreover, to satisfy the postulates
that derive from experiments with brain
tissue, it should be shown that these
three processes interact with each other
in the following ways: (i) GABA modulin
should inhibit the high-affinity binding of
GABA and benzodiazepines (/, 2); (ii)
the activation of GABA receptors should
change the flux of Cl~ across the mem-
brane (5); (iii) the K, values for binding
of GABA (6) and benzodiazepines (7)
should be similar to those in brain mem-
branes (8); and (iv) the addition of ben-
zodiazepines should change the mem-
brane binding sites for GABA from a ho-
mogeneous class with a K of 200 nM to
two classes (K4, = 200 nM, Ky = 20
nM) (I, 2), and vice versa: the addition of
GABA should lower the K, for ben-
zodiazepine binding (§).

The high-affinity receptors for the ben-
zodiazepines and GABA located on the
membranes of NB and C6 cells have
properties similar to those of receptors
located on brain membranes (Table 1).
The K,'s of diazepam, clonazepam, and
flunitrazepam are approximately equal in
C6 (5to 6 nM), NB (3 to 9 nM), and rat
brain cortex (3 to 7 nM) membranes (9).
In the membranes of NB cells, as in
brain membranes, the affinity of [*H]-
clonazepam and [*H]flunitrazepam for
the receptor is higher than that for
[*H]diazepam (Table 1).

The density of binding sites is three- to
fourfold higher in brain synaptic mem-
branes than in the membranes of NB
cells. The B, values for the three
[*H]benzodiazepines are similar in mem-
branes of NB cells; however, in C6 cells,
[*H]clonazepam labeled only half as
many binding sites as did [?’H]diazepam
(Table 1).

The membranes prepared from brain
and those prepared from clonal cell lines
have similar kinetics for the high-affinity
binding of GABA to receptors. Scat-
chard analysis of the saturation curve
obtained with freshly prepared mem-
branes from NB revealed only one re-
ceptor component. When these mem-
branes were frozen, thawed, and treated
with Triton X-100 (/), Scatchard analysis
revealed two populations of GABA re-
ceptors. The binding of GABA to the
high-affinity site of both NB and C6 cells
was saturable; GABA was displaced by
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Fig. 1. (A) Interaction between diazepam and GABA modulin on binding of [*H]|GABA to
mouse NB,, neuroblastoma membranes. Crude membranes from NB cells were prepared by
successive freezing, thawing, and washing with tris-citrate buffer plus treatment with Triton X-
100 (7). This membrane preparation was frozen at —20°C for another 16 to 18 hours. After
thawing and washing twice with tris-citrate buffer, the membranes (approximately 250 ug of
protein per milliliter) were incubated at 0°C for 15 minutes with 10~} diazepam or solvent
before addition of GABA modulin. The data are graphed by the Lineweaver-Burke method.
This plot shows an apparent competitive interaction between diazepam and GABA modulin.
GABA modulin was extracted from NB cell membranes as described for Table 1. Partial purifi-
cation was achieved by filtering the boiled and dialyzed extract on a Sephadex G-100 column
(7). (B) Effect of GABA on [*H]diazepam binding. Fresh crude membranes from mouse NB
cells and rat brain cortex were obtained as described (/). The fresh membranes were frozen at
—20°C for 16 to 18 hours. After thawing and washing with 50 mM tris-citrate buffer (pH 7.1), the
membranes (approximately 300 to 350 ug of protein per milliliter) were used for assay. A typical
reaction mixture contained, in a total volume of 1 ml, approximately 300 ug of membrane pro-
teins, 6 nM [*H]diazepam (39 Ci/mmole, New England Nuclear), and 10~*M GABA. The mix-
ture was incubated at 0°C for 15 minutes. Specific [*H]diazepam binding is defined as the dif-
ference between total [*H]diazepam binding and that obtained in the presence of 5 x 10~°M
flunitrazepam. *P < .05 when compared with control group.

muscimol [concentration producing 50
percent inhibition (ICj,) = 5 x 107M]
and bicuculline methiodide (IC;, =
107°M). The pH optimum for GABA
binding was ~ 7 for membranes of both
NB and C6 cells. In membranes pre-
pared from brain cortex, the high-affinity
site for GABA binding is unmasked after
GABA modulin has been removed by
freezing, thawing, and repeated washing
with Triton X-100 and tris-citrate buffer.
This procedure increases the affinity of
GABA receptors for GABA in mem-
branes of C6 and NB cells and also re-
moves a significant amount of the GABA
modulin (Table 1).

Partially purified preparations of
GABA modulin obtained from mem-
branes of NB cells inhibit in a dose-re-
lated fashion the high-affinity Na*-inde-
pendent [*H]JGABA binding to mem-
branes of NB cells which had been
previously frozen, thawed, treated with
Triton X-100, and repeatedly washed
with tris buffer (Fig. 1A). Furthermore,
diazepam (107°M) prevents the action of
GABA modulin on the high-affinity bind-
ing of PH]JGABA. The kinetics of this
interaction appear to be competitive
(Fig. 1A). Similar results were obtained
with membranes from C6 cells. In ad-
dition, in membranes of NB or C6 cells,
the activation of the GABA receptor in-
creases the binding for benzodiazepines.
When membranes prepared from NB or
C6 cells were treated with GABA (10~4M)

Table 1. Comparison of kinetic constants for benzodiazepine and GABA binding in membranes prepared from clonal cell lines and rat brain.
Mouse NB and rat C6 cells were grown to confluency in Dulbecco’s modification of Eagle’s medium containing 10 percent fetal calf serum 4).
For benzodiazepine binding studies, the membranes (crude mitochondrial fractions) (/) were frozen for 12 hours and then washed with 200
volumes of 50 mM tris-citrate buffer (pH 7.1) just before assay. The nonspecific binding was determined by using 5 x 10~M cold flunitrazepam
with [*H]diazepam, 5 X 107°M diazepam with [3H]clonazepam, and 5 X 10-5M diazepam with [*H]flunitrazepam. [P HJGABA binding was deter-
mined in fresh or frozen membranes treated with Triton X-100 (/). In freshly prepared membranes the total binding per milligram of protein for 20
nM [*H]JGABA was 3500 count/min, and the nonspecific binding was 2500 count/min. In frozen membranes treated with Triton X-100 the total
binding per milligram of protein was 4500 count/min and the nonspecific binding was 2000 count/min. GABA modulin content was assayed with 20
nM [PH]GABA and 200 ug of brain synaptic membranes, frozen and washed several times with Triton X-100 to remove endogenous GABA
modulin. One unit (U) of GABA modulin is the amount that produces 20 percent inhibition of [*H]GABA binding. The soluble GABA modulin
represents the inhibitory material extracted by disrupting the cell membranes with homogenization (polytron setting 6 for 30 seconds) in H,O and
then washing with 50 mM tris-citrate buffer. The aqueous and tris buffer supernatants (after centrifugation at 40,000g for 20 minutes) were pooled
and heated at 95°C for 10 minutes. The sample was then dialyzed for 72 hours against the same tris buffer and centrifuged at 40,000g for 10
minutes. The clear supernatant appropriately diluted was for measuring inhibitory activity. Each value is the mean of three separate experiments;
GABA modulin is given as units per milligram of membrane protein. Variation from the mean was never greater than 15 percent. [methyl-
*H]Diazepam (39 Ci/mmole) and [2,3-°H(N)|GABA (40 Ci/mmole) were from New England Nuclear. Generally labeled [*H]clonazepam (20 Ci/
mmole) and [*H]flunitrazepam (20 Ci/mmole) were gifts from Hoffmann-La Roche.

Specifically bound [*H]benzodiazepines Specifically bound [*PH]JGABA

Diazepam Clonazepam Flunitrazepam Frozen + Triton X-100
- Fresh : GABA-
Membrane e LOV.V ng.h modulin
B B B affinity affinity (U/mg)
Kq (prrylnc()li(e/ Kq ( nllnoai(e/ Kq (pnTSfe/ )
(nM (l’lM) p (I'IM) K Bmax K Bmax K Bmax
mg) mg) mg) ( M;) (pmole/ ( n/tfl) (pmole/ @ /31) (pmole/
mg) mg) mg)
NB,, neuro-
blastoma 9.2 0.24 3.7 0.23 3.4 0.23 200 0.39 300 0.9 19 0.22 25
C6 glioma 5.0 0.15 5.6 0.8 210 0.41 260 0.2 26 0.21 20
Brain cortex 6.9 0.84 2.2 1.2 3.6 0.98 220 2.5 130 4.9 15 0.75 10
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before addition of 6 nM [*H]diazepam,
the amount of specifically bound [*H]-
diazepam was increased by approxi-
mately 30 percent. This increase was
similar to that observed in brain mem-
brane preparations (Fig. 1B).

Clonal lines of neuroblastoma and
glioma cells have proved to be a suitable
substrate for studying molecular mecha-
nisms in the organization of cate-
cholamine (/0) and opiate receptors (//).
The data reported here support the view
that NB and, to a lesser degree, C6 cell
lines are also adequate models for study-
ing regulation of the GABA ‘‘receptor
unit.”’ This unit is composed of GABA
and benzodiazepine receptors and
GABA modulin. The physiological inter-
action of GABA modulin with GABA
and benzodiazepine receptors in the
membranes of NB and C6 glioma cells is
indirectly suggested by studies with in-
tact cells: (i) in intact NB cells (/2),
[*H]clonazepam and [*H]diazepam label
a similar number of benzodiazepine re-
ceptors, with a K; essentially identical to
that shown in isolated neuroblastoma
membranes; (ii) diazepam (10-%M) added
to NB or C6 cell cultures produces 50
percent release of the inhibitor into the
medium and a concomitant 50 percent
decrease of the inhibitor in the cell mem-
branes.

In addition, the regulation of the
GABA receptor units located on NB or
C6 cell membranes is in many aspects
similar to the regulation of those located
on brain membranes. In NB and C6 clon-
al cell lines, as in brain, GABA binding
is regulated by GABA modulin and its ki-
netics are modified by the activation
of specific benzodiazepine receptors.
Moreover, the GABA receptor can also
modify the benzodiazepine receptor and
as a result it can increase the affinity of
the specific binding sites for benzodiaze-
pines. Whereas the benzodiazepines act
competitively with GABA modulin (2), it
is not known whether GABA also regu-
lates diazepam binding by acting on
GABA modulin. One could speculate
that the physiological agonist of the ben-
zodiazepine receptor is GABA modulin.
Conversely, one could also propose that
an endogenous benzodiazepine agonist
modulates the function of the GABA
modulin, but such an agonist has not yet
been found.

It is pertinent to discuss the physiolog-
ical role linked to the interactions be-
tween GABA and GABA modulin and
the pharmacological implications of the
consequences of the activation of the
benzodiazepine receptors. One possibili-
ty is that GABA modulates a Cl~ channel
in NB and C6 cell lines. Initial results
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with NB cells indicate that the activation
of GABA receptors causes an increase in
the inward Cl~ flux (/3); whether the co-
operative interaction of the benzodi-
azepine and GABA receptors extends al-
so to the GABA regulation of Cl~ chan-
nels remains to be investigated.

M. BARALDI, A. GUIDOTTI

J. P. ScHwaARrTz, E. CosTA
Laboratory of Preclinical
Pharmacology, National Institute of
Mental Health, St. Elizabeths Hospital,
Washington, D.C. 20032
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Menopausal Flushes: A Neuroendocrine

Link with Pulsatile Luteinizing Hormone Secretion

Abstract. Menopausal flush episodes were found to be invariably associated with
the initiation of pulsatile pituitary release of luteinizing hormone. This was not ac-
companied by a significant change in circulating catecholamine or prolactin concen-
trations. Since pulsatile luteinizing hormone release results from episodic secretion
of luteinizing hormone releasing factor by the hypothalamus, these findings suggest
a link between the neuroendocrine mechanisms that initiate such episodic secretion
and those responsible for the onset of flush episodes.

Although estrogen withdrawal unques-
tionably plays a major role in the devel-
opment of menopausal flushes, the phys-
iological mechanism for the initiation of
flushes and of transient physical changes
during flush episodes (/, 2) remains elu-
sive. It has been suggested that men-
opausal flushes are manifestations of va-
somotor instability due to a transient in-
crease in adrenergic activity 3, 4), but
evidence to support this is lacking. The
study described here was therefore de-
signed to search for neuroendocrine cor-
relates of spontaneous flushes in hypogo-
nadal women.

A total of 55 flush episodes were stud-
ied in six postmenopausal women. All
studies were carried out with the sub-
jects at bed rest in a quiet room with a
stable, ambient temperature. A normal
diet with the exclusion of caffeine and
nicotine was provided and all subjects
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were fully awake during the 8- to 10-hour
studies. Onset of flush episodes was re-
ported by the subjects and retrospective-
ly confirmed by objective observation.
Finger temperature was measured by us-
ing thermistors, and electrocardiogram
and pulse rate were monitored. These
parameters were continuously graphed
by an eight-channel physiological re-
corder. Blood samples were obtained
from an indwelling venous cannula at 2-
to 15-minute intervals between flush epi-
sodes for determination of serum lute-
inizing hormone (LH), follicle stimu-
lating hormone (FSH), and prolactin
(PRL) concentrations by radioimmuno-
assay (5) and plasma dopamine (DA),
norepinephrine (NE), and epinephrine
(E) concentrations by radioenzymatic
assay (6).

The onset of each of the 55 flushes was
characterized by a sudden intense sensa-
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