
cortex (14), asymmetries within these 
pathways could cause lesions of the right 
hemisphere to affect catecholaminergic 
neurons differently from identical lesions 
of the left hemisphere. Although Glick et 
al. found asymmetry in the rat nigrostria- 
tal pathway, the side with greater DA 
concentration varied among animals. In 
addition they found no asymmetry in 
forebrain NE (6). 

In previous studies we have suggested 
that post-stroke emotional changes in 
humans, such as apathy and depression, 
may be the psychological manifestation 
of the changes occurring within the cate- 
cholaminergic neurons (1-4). Our cur- 
rent results suggest that emotional later- 
alization following brain injury may also 
be the psychological consequence of the 
asymmetrical response of catechol- 
aminergic neurons to cortical injury. 
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Differences in Neural Organization Between Individuals 

with Inverted and Noninverted Handwriting Postures 

Abstract. Levy's hypothesis that movements of the distal musculature are con- 
trolled by ipsilateral motor projections in subjects with inverted writing posture was 
tested in a reaction-time experiment with lateralized auditory, tactual, and visual 
stimulation. Subjects were required to depress a response key with the left or right 
index finger when they detected a stimulus in either the left or right sensory field. 
Writers with noninverted posture responded quickest to stimuli on the same side as 
the responding hand in all modalities tested, whereas inverted writers showed this 
pattern only in auditory and tactual modalities. In the visual modality, they respond- 
ed quickest to stimuli on the side opposite the responding hand. Because Levy's 
hypothesis predicts the latter effect in all modalities for inverted writers, it is chal- 
lenged by our results, which suggest that inverted writers may be characterized by 
anomalous visual or visuomotor organization. 
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The relation between handedness and 
cerebral dominance would be relatively 
simple if there were no left-handers. 
Whereas more than 95 percent of right- 
handers are left hemisphere-dominant 
for language, only 60 to 70 percent of 
left-handers show this pattern, the re- 
mainder being divided into those who 
have language represented bilaterally 
and those who have it on the right (1). 
Attempts to predict cerebral dominance 
in left-handers on the basis of such fac- 
tors as familial handedness and strength 
of handedness have not been entirely 
successful, which indicates that relation 
among these factors and cerebral domi- 
nance in left-handers is not well under- 
stood (1, 2). It has been proposed, how- 
ever, that hand posture during writing 
may provide the best index of cerebral 
dominance in both left- and right-hand- 
ers (3). 

Most individuals assume one of two 
postures during writing; noninverted, 
with the hand below the line of writing 
and the pen pointing to the top of the 
page; or inverted, with hand above the 
line of writing and the pen pointing 
downward giving the hand a hooked ap- 
pearance. According to a model pro- 
posed by Levy (3), hemispheric motor 
projections, such as the pyramidal 
tracts, that control fine movements of 
the distal musculature are primarily con- 
tralateral in noninverted writers and ip- 
silateral in inverted writers. Con- 
sequently, the language-dominant hemi- 
sphere is on the same side as the writing 
hand in inverted writers and on the oppo- 
site side in noninverted writers. The 
ideas regarding hemispheric motor con- 
trol, and the predictions that follow from 
it, are derived, in part, from a genetic 
model of handedness and cerebral domi- 
nance (4). It states that cerebral domi- 
nance is determined by one gene and 
handedness is determined indirectly by a 
second gene that specifies whether the 
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dominant hand will be ipsilateral or con- 
tralateral to the language-dominant hem- 
isphere. 

Levy and Reid (5) found that the pat- 
tern of hemispheric specialization as re- 
flected in the performance of normal 
people on tachistoscopic laterality tests 
was in accordance with the model. In 
identifying unilaterally presented non- 
sense syllables, noninverted writers fa- 
vored the visual field on the same side as 
the writing hand, thereby implicating the 
hemisphere contralateral to it as the 
dominant one for language. Inverted 
writers showed the opposite pattern of 
results, except for diminished perceptual 
(and presumably hemispheric) asymme- 
tries, which suggests that in this popu- 
lation speech is relatively bilaterally rep- 
resented (1). 

Not all attempts to verify this hypothe- 
sis were as successful. A number of in- 
vestigators (6-8) using a variety of tech- 
niques, including tachistoscopic ones, to 
assess cerebral dominance either found 
no relation between hand posture and 
speech lateralization or a weak correla- 
tion. Rather than attempt to assess lan- 
guage lateralization yet another time, we 
decided to test that aspect of the model 
that deals with hemispheric control of 
the distal musculature. This problem is 
central both to the model on hand pos- 
ture during writing and cerebral organi- 
zation and to the genetic model (4) of 
handedness and cerebral dominance. In 
addition, there was no direct empirical 
evidence on the validity of the assertion 
that fine motor movements are con- 
trolled by the ipsilateral hemisphere in 
inverted writers or, for that matter, in 
anyone. This notion is so contrary to 
widely held views of structural and func- 
tional neuroanatomy (9) that any evi- 
dence in its favor would have far-reach- 
ing implications on our ideas of the or- 
ganization of the nervous system. 
Negative evidence, on the other hand, 
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Fig. 1. (A) A schematic diagram depicting Levy's hypothe- 
sized main sensory and motor projections in inverted and 
noninverted writers. (B) Reaction-time differences between 
same and opposite hand-field conditions for all groups to 
stimuli in the visual, tactual, and auditory modalities. Abbre- 
viations: RN, noninverted right-handers; LN, noninverted 
left-handers; LI, inverted left-handers; and RI, inverted right- 
handers. 

would seriously challenge the above 
models. Rather than finding differences 
in the motor system, our experiments 
show fundamental differences between 
inverted and noninverted writers in the 
organization of the visual or the vis- 
uomotor system. 

To test the hypothesis on hemispheric 
motor control, we chose a simple reac- 
tion-time procedure in which individuals 
were asked to respond as quickly as pos- 
sible, with either the right or left hand, to 
a stimulus that appeared in either the 
right or left sensory field. The visual, 
auditory, and tactual modalities were 
tested separately for each individual. To 
avoid engaging the specialized process- 
ing mechanisms of either hemisphere, 
the stimuli were simple, unpatterned, 
and salient (10): a dot, a pure tone, and a 
touch. The strongest sensory pathways 
in each of these modalities project pri- 
marily to the contralateral hemisphere 
(Fig. lA). Response times in any of these 
modalities will be shortest to a stimulus 
that has the most direct access to the 
hemisphere emitting or controlling the 
response. According to conventional 
neuroanatomical notions, latencies would 
favor stimuli that appeared in the sen- 
sory field on the same side as the re- 
sponding hand (same hand-field condi- 
tion) regardless of the individual's hand- 
edness or writing posture. If the model is 
correct, however, this would be true of 
only noninverted writers (see Fig. lA). 
Inverted writers, whose responses are 
controlled by uncrossed motor path- 
ways, would respond more quickly to a 
stimulus in the sensory field opposite the 
responding hand (Fig. 1A). Only per- 
formance in the visual modality support- 
ed the prediction from the model. 

One faculty member, one fourth-year 
graduate student, and 35 undergraduates 
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were divided into four groups on the 
basis of writing hand and writing posture 
(11). There were six males and six fe- 
males in each of the following three 
groups: right noninverted, left non- 
inverted, and left inverted. Because right 
inverters are rare, the final group con- 
sisted of one undergraduate female. All 
subjects reported normal hearing and 
normal or corrected-to-normal vision. 

The experiment was conducted in an 
illuminated room with an ambient noise 
level of about 50 dB. The subject sat at a 
table and rested the index finger of either 
the left or right hand on a response key. 
A warning signal was followed about 1 
second later by a stimulus trial or a blank 
trial which ensured that the subject did 
not anticipate the stimulus. The subject 
was required to depress the key as quick- 
ly as possible when the stimulus was de- 
tected and to refrain from responding 
during blank trials (12). The test stimulus 
was presented randomly, but equally of- 
ten, to either the left or right sensory 
field for 150 msec. The onset of a stimu- 
lus triggered a millisecond timer that was 
stopped by the subject's response. The 
reaction time was recorded by the exper- 
imenter who sat opposite the subject. 

Each modality was tested separately. 
There were 400 trials each in the visual 
and tactual modalities and 416 trials in 
the auditory modality, divided equally 
into two sessions. Half were stimulus 
and half were blank trials. In one session 
the subject responded with the left hand; 
in the other, with the right. The orders 
of responding hand and of test modality 
presentation were counterbalanced across 
subjects (13). 

Tactile stimulation was accomplished 
by releasing a 4.395-g Guardian Electric 
(#4X7) tapered solenoid pin onto the 
center of the middle fingernail from a dis- 

tance of 2 mm (14). Each middle finger 
was positioned beneath one solenoid and 
the solenoid-to-finger distance was ad- 
justed. A microswitch-response key was 
then mounted beneath the index finger. 
Subjects were instructed to close their 
eyes and prepare to respond when the 
experimenter tapped the desk. If it was a 
stimulus trial, the experimenter released 
either the left or right solenoid about 1 
second later. The intertrial interval was 
about 5 seconds, during which latencies 
were recorded. 

In the visual condition, subjects were 
shown 6 by 4 inch index cards in a rear- 
loading Cambridge two-channel tachis- 
toscope (BRD Electronics) and were re- 
quired to respond when a laterally posi- 
tioned 3-mm dot appeared 2? of visual 
angle to either the left or right of a cen- 
trally located 2-mm fixation point. Lumi- 
nances were 21.47 and 17.86 mL for pre- 
exposure and stimulus fields, respective- 
ly. Subjects were instructed to focus on 
the fixation point when the experimenter 
tapped the desk and to prepare to re- 
spond. About 1 second later a stimulus 
or blank trial was presented. The inter- 
trial interval was 5 to 7 seconds, during 
which the experimenter recorded the re- 
action time and changed stimuli (15). 

Auditory stimuli were pure tones pre- 
sented against a white noise background 
with a signal-to-noise ratio of 24 dB. A 
300-msec, 350-Hz binaural tone that 
served as a warning signal was followed 
1 second later by a 150-msec, 1000-Hz 
monaural test tone in the left or right 
channel on half of the trials, and by noth- 
ing on the other half. The stimuli were 
taped and played on a Revox A-77 tape 
recorder and delivered through TDH-39 
stereo earphones (16). Onset of the mon- 
aural test stimulus activated an ERC dig- 
ital millisecond timer (Textron Ltd.) 
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through Schmitt triggers. Unlike testing 
in other modalities, trials were arranged 
randomly in four blocks of 52 trials with 
a 6-second intertrial interval. Subjects 
were tested with their eyes closed. 

Table 1 presents mean group reaction 
times for each modality according to re- 
sponding hand and side of stimulation 
(17). Differences between inverted and 
noninverted writers were found only in 
the visual modality. As expected, non- 
inverted writers responded quickest to 
stimuli in the sensory field on the same 
side as the responding hand in all the mo- 
dalities tested. Inverted writers, how- 
ever, followed this trend only in the audi- 
tory and tactual modalities. In the visual 
modality, inverted writers responded 
quickest to stimuli in the visual field op- 
posite the responding hand (Fig. lB). 
There were no significant group effects 
or interactions in the tactual and audi- 
tory modalities (18) [F(2, 33) = 0.75, 
P = .45; and F(2, 33) = 1.76, P = .18, 
respectively], which indicates that all 
groups behaved similarly. Not one sub- 
ject showed the pattern predicted by the 
motor control hypothesis in both of these 
modalities. However, there was a highly 
significant group-responding hand-field 

interaction in the visual modality [F(2, 
33) - 21.58, P < .001]. As expected, the 
responding hand-field interaction was 
highly significant in all three modalities: 
auditory, F(l, 33) = 20.35, P < .001; 
tactual, F(1, 33) = 103.33, P < .001; and 
visual F(1, 33) = 5.86, P < .02. This in- 
dicates that latencies were fastest to 
stimuli having direct access to the hemi- 
sphere controlling the responding hand 
(19, 20). 

If the hypothesis on hemispheric mo- 
tor control were correct, inverted and 
noninverted writers would show oppo- 
site sensory field advantages in each mo- 
dality in our reaction-time tasks (Fig. 
lA). That such differences were found 
only in the visual modality seriously 
challenges this hypothesis as well as the 
models (3, 4) that depend on its validity. 
Our failure to find evidence of ipsilateral 
motor control is consistent with the ob- 
servations that unilateral hemispheric 
anesthetization rarely, if ever, produces 
a hemiplegia that is primarily ipsilateral 
to the affected hemisphere (7) and that 
electrophysiological activity is greatest 
over the parietal region contralateral to 
the moving hand, even in inverted 
writers (6-8, 21). 

Table 1. Mean reaction times and standard deviations in response to simple visual, tactual, and 
auditory stimuli according to responding hand and side of stimulation. The numbers in paren- 
theses indicate the number of subjects in each group performing in accordance with the group 
average. Groups: left noninverted (LN), left inverted (LI), right noninverted (RN), and right 
inverted (RI). 

Responding hand 

Left Right 

Group Side of stimulation Side of stimulation 

L R L R 
(msec) (msec) (msec) (msec) 

Visual 
RN 266.8 + 47.9 273.5 ? 51.7 274.7 + 46.0 262.9 + 43.8 

(9/12) (11/12) 
LN 277.5 ? 45.2 285.4 ? 52.2 276.1 + 47.7 262.7 + 46.7 

(9/12) (9/12) 
LI 275.7 + 44.9 265.1 + 45.7 259.3 + 41.2 266.1 ? 42.8 

(9/12) (9/12) 
RI 234.5 ? 27.5 229.9 ? 28.5 240.2 + 59.9 250.1 ? 48.1 

(1/1) (1/1) 
Tactual 

RN 221.9 + 33.0 233.3 + 42.0 247.5 + 43.6 231.1 + 34.9 
(11/12) 

LN 221.9 + 40.0 226.2 + 37.3 217.7 + 42.8 205.0 ? 36.2 
(8/12) (11/12) 

LI 213.1 ? 37.4 221.2 + 36.5 236.1 + 44.0 221.7 ? 36.7 
(9/12) (10/12) 

RI 168.8 + 14.0 186.7 + 17.8 185.2 + 37.9 175.9 ? 23.8 
(1/1) (1/1) 

Auditory 
RN 189.0 + 35.8 192.4 ? 35.8 193.6 + 43.7 187.0 ? 38.1 

(9/12) (9/12) 
LN 188.4 ? 35.4 190.9 + 34.4 181.0 + 38.2 178.3 + 30.5 

(9/12) (6/12) 
LI 180.4 ? 30.0 181.2 + 33.6 183.6 ? 30.7 176.1 + 28.6 

(8/12) (9/12) 
RI 178.5 ? 31.8 179.4 + 25.2 166.4 + 19.9 162.1 + 17.5 

(1/1) (1/1) 
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Our results, instead, suggest that the 
differences in neural organization be- 
tween inverted and noninverted left- 
handers lie primarily in the visual system 
or its interface with the motor system. 
Inverted writing postures can be viewed 
as a form of compensation for an abnor- 
mal visual, or visuomotor, organization. 
In these studies we noted that inverting 
the hand makes it easier for individuals 
with a noninverted writing style to write 
English upside down so that the text 
reads from right to left (22). Perhaps in- 
verted writers adopt that posture regu- 
larly because of some anomaly in their 
visual or visuomotor representation of 
the world. In cultures where the direc- 
tion of writing is opposite to English, 
from right to left, such compensation 
may not be necessary. The incidence of 
inversion in writers of Hebrew is less 
than 10 percent even in left-handers, 
compared to about 50 percent in Ameri- 
can left-handers (23). 

Our visuomotor hypothesis is compat- 
ible with the finding of Herron et al. that 
electrophysiological differences between 
inverted and noninverted writers occur 
only at occipital leads (8). It is also con- 
sistent with the finding that those lateral- 
ity tests with a strong component best 
distinguish inverted from noninverted 
left-handers (6). 

The exact nature of the neural anoma- 
lies in inverted left-handers, however, is 
still uncertain (24). For the present we 
are satisfied to have demonstrated that 
there are definite differences in neural or- 
ganization between inverted and non- 
inverted writers, and that they seem to 
involve the visual or visuomotor system. 
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LEE C. SMITH* 
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Development and Department of 
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Delayed Neurotoxicity of Phenylphosphonothioate Esters 

Abstract. Administration of a single oral dose of five phenylphosphonothioate es- 
ters produced delayed neurotoxicity in hens; their potency was, in descending order, 
cyanofenphos, EPN, desbromoleptophos, leptophos, and EPBP (Seven). Histologi- 
cal examination showed that in some hens there was marked axonal and myelin 
degeneration in the spinal cord and peripheral nerves. The results suggest that de- 
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layed neurotoxicity may be a general 
secticides. 

Although organophosphorus pesti- 
cide-induced delayed neurotoxicity may 
be produced by some organophosphorus 
esters, most of these compounds cause 
acute poisoning with temporary muscle 
weakness (1). The delayed neurotoxic ef- 
fect was first demonstrated in humans 
(2); later, some additional species were 
found to be susceptible (cats, dogs, 
cows, and chickens), while others were 
not (rodents and some primates) (3). The 
test animal chosen to demonstrate this 
syndrome is the adult chicken. The clini- 
cal condition is recognized as ataxia, 
which develops 4 days or more after ad- 
ministration. Lesions are characterized 
by degeneration of axons with sub- 
sequent Wallerian degeneration of mye- 
lin. Recently, the phenylphosphono- 
thioate insecticide leptophos has been 
implicated in the poisoning and paralysis 
of some workers in Texas (4). Leptophos 
produces delayed neurotoxicity in farm 
animals and chickens (5-9). A photodeg- 
radation product of this compound, des- 
bromoleptophos (DBL), was reported to 
cause delayed neurotoxicity in chickens 
(10). Another insecticide in this group, 
EPN, caused delayed neurotoxicity 
when fed (//) or orally administered (12, 
13) to chickens. I report here the ability 
of two other phenylphosphonothioate in- 
secticides, EPBP and cyanofenphos, to 
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feature of phenylphosphonothioate in- 

cause delayed neurotoxicity in hens. I al- 
so report the relative neurotoxic po- 
tencies of the five phenylphosphono- 
thioate esters: leptophos, DBL, EPBP (S- 
Seven), EPN, and cyanofenphos (Fig. 
1). 

Experiments were performed with 
adult hens (Gallus gallus domesticus), 
mixed breed (Spafas, Inc., Norwich, 
Connecticut), each 1 year old and weigh- 
ing approximately 1.5 kg. Eight groups 
of hens (three each) were given a single 
oral dose of each compound in a gelatin 
capsule; dose ranges (in milligrams per 
kilogram of body weight) were: lep- 
tophos, 10 to 3000; DBL, 10 to 100; 
EPBP, 100 to 5000; EPN, 10 to 500; and 
cyanofenphos, 5 to 250. Hens given all 
doses of EPN and high doses of the other 
insecticides had been previously treated 
with a single oral dose of atropine sulfate 
(30 mg/kg) in water as protection against 
the acute toxicity of these esters. Con- 
trols consisted of four groups of hens 
orally given empty gelatin capsules, tri- 
o-cresyl phosphate (TOCP) (500 mg/kg), 
parathion (10 mg/kg) with atropine sul- 
fate (30 mg/kg), or atropine sulfate (300 
mg/kg). The birds were supplied with 
food and water ad libitum. Body weights 
were monitored and hens were examined 
periodically for neurological signs of de- 
layed neurotoxicity. Nerve tissues were 
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