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by definition are multicomponent systems. 
Early attempts to polymerize in lyo- 

tropic liquid crystals (7-10) have re- 
cently (11, 12) been criticized as achiev- 
ing retention of the long-range order by 
freezing the structure with cross-cou- 
pling agents rather than forming an equi- 
librium liquid crystal. The conditions for 
polymerization with retained liquid crys- 
talline structure have been stated (11) by 
comparison with homotropic polymer- 
ization in crystalline structures (12-15). 
For a liquid crystalline structure the 
translational entropy component in the 
expression for the total free energy 
should also be included. Its magnitude is 
difficult to estimate; for microemulsions 
(16) the contribution of the entropic free 
energy is similar in magnitude to the con- 
tributions of other components of the 
free energy. 

The fact that polymerization with re- 
tention of the liquid crystalline structure 
may be a rare phenomenon in lyotropic 
liquid crystals (//) encouraged us to 
choose an alternative route: to observe 
structural changes during polymerization 
in a lyotropic liquid crystalline matrix. 
We are now able to report a change from 
one liquid crystalline structure to anoth- 
er during polymerization of the amphi- 
philic component. To our knowledge, 
this is the first report of such a change. 
It is essential to realize that the struc- 
ture obtained represents the stable 
conformation of the system; there is 
no "freezing in" of a structure--it 
forms spontaneously from an isotropic 
melt. 

The components of the liquid crystal 
were distilled water (with 0.05M ammo- 
nium persulfate as an initiator) and so- 
dium undecenoate. They formed a liquid 
crystal in the concentration range 47 to 
59 percent sodium undecenoate (by 
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Optical pattern of the polymerized sample. 
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Changed Lyotropic Liquid Crystalline Structure Due 

to Polymerization of the Amphiphilic Component 

Abstract. Optical patterns in polarized light and x-ray reflections in the low-angle 
region were used to detect a shift from one liquid crystalline structure to another 
during polymerization. The polymerization took place in a lyotropic liquid crystal of 
water and sodium undecenoate, with a structure consisting of cylinders in a two- 
dimensional hexagonal close packing. After polymerization, a lamellar liquid crys- 
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Fig. 2. Polyethylene backbone structure may accommodate head-to-head and head-to-tail con- 
formations, with the exception of the tail-to-tail cis structure. 
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weight) at 60?C, at which temperature 
the polymerization took place in an N2 
atmosphere of degassed components. 

The optical pattern (Fig. 1A) and low- 
angle x-ray reflections with radius ratios 
1: 1.71: 2.03 indicated that the liquid 
crystalline structure before polymeriza- 
tion was a hexagonal array of close- 
packed cylinders (17). The pattern (Fig. 
1A) was identical over the temperature 
range 20? to 75?C, leaving no doubt about 
the structure at 60?C before polymeriza- 
tion. 

Structural changes during polymeriza- 
tion were followed at 60?C by direct mi- 
croscopic observation of a sample sealed 
between two microscopy slides glued to 
spacers. Weighing of the sample during 
the process showed that no evaporation 
took place. After polymerization for 24 
hours, no optical anisotropy was found; 
the polymerization was complete. In- 
frared spectra showed no double bonds 
in the structure. When the temperature 
was reduced to 20?C the optical pattern 
of a lamellar liquid crystalline phase ap- 
peared (Fig. lB), and low-angle x-ray re- 
flections of a powder from the polymeri- 
zation in a sealed ampul showed distance 
ratios of 1: 1/2: 1/3 characteristic of a 
lamellar structure. 

These results show that a lamellar 
structure was formed. Evidence for a la- 
mellar liquid crystalline structure as dis- 
tinguished from a crystalline structure of 
lamellae was the observation of one dif- 
fuse reflection at 4.5 A characteristic of 
liquid hydrocarbon chains. A crystalline 
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structure would display a series of sharp 
reflections in the range 3 to 4.5 A, show- 
ing the crystalline packing of the meth- 
ylene groups of the hydrocarbon chains. 

The structure of the lamellar phase 
must be related to the fact that the mo- 
lecular weight is medium; high-pressure 
liquid chromatography showed an aver- 
age size with 270 amphiphilic units in 
each molecule. The backbone of the 
polymer is the polyethylene chain "sub- 
stituted" with the remaining parts of the 
amphiphile chain. Molecular models 
showed that such a structure accommo- 
dates all head-to-tail and head-to-head 
configurations in the cis and trans con- 
formations (Fig. 2) with exception of 
tail-to-tail in the cis conformation. 
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The structure necessitates considerable 
bending of the hydrocarbon chains; a 
formal calculation of the thickness of the 
amphiphilic layer supports this sugges- 
tion. An expected hydrocarbon length 
for a normal liquid crystalline packing 
chain (18) of 14.15 A would mean an 
angle of 29.4? for the hydrocarbon chain 
axis against the layers. There appears to 
be little basis for accepting such a struc- 
ture. The suggested structure of a poly- 
ethylene backbone appears reasonable. 

STIG E. FRIBERG 
RAJU THUNDATHIL 
JAMES 0. STOFFER 

Chemistry Department, 
University of Missouri, Rolla 65401 
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Subicular Input from Temporal Cortex in the Rhesus Monkey 

Abstract. The subicular cortices of the primate hippocampal formation form a 
physical and connectional link between the cortex of the temporal lobe and the hip- 
pocampus. Their direct connections with all classes of cortex in the temporal lobe 
except primary sensory cortex underscore the pivotal role of these areas in the poten- 
tial interplay between the hippocampal formation and the association cortices. 
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Since their description nearly a cen- 
tury ago (1) the subicular cortices of 
the mammalian hippocampal formation 
(2) have had the vague anatomical dis- 
tinction as simply the gray matter pas- 
sageway interposed between the hip- 
pocampal allocortex medially and the 
occipitotemporal isocortex laterally. Lit- 
tle else has been known about these 
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architectonically heterogeneous areas 
despite the fact that they reach their 
greatest relative size and elaboration in 
primates, including humans (3). Recent- 
ly, however, anatomical results have 
made it increasingly clear that the subic- 
ular cortices in fact hold a pivotal posi- 
tion within the hippocampal formation 
for relaying the output of the hippo- 
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