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Periodic changes in the luminance of a 
light produce a sensation of flicker. If 
these changes in luminance are large, 
flicker can be observed at frequencies as 
high as 70 to 80 Hz. Flicker can also be 
observed if the chromaticity (wavelength 
composition) of a light is varied, while 
luminance is kept constant. At low fre- 
quencies this chromatic flicker is more 
effective than luminance flicker but at 
high frequencies the converse is true (1, 
2). The neurophysiological basis for this 
difference between the perception of lu- 
minance and chromatic flicker is un- 
known. Suggestions have been made (2, 
3) that these perceptual differences could 
be due to the properties of two distinct 
classes of cells detectable in primate reti- 
na (4) and lateral geniculate nucleus (5): 
one class, which is wavelength selective 
(the so-called color-opponent cells), and 
the other, which does not show color op- 
ponency and is consequently selective 
only for the effective energy of lumi- 
nance of light. 
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We have examined this hypothesis in 
single ganglion cells subserving the cen- 
tral retina of the rhesus monkey. The 
physiology of one class of cells, the col- 
or-opponent variety alone, may provide 
the entire explanation for the differences 
between chromatic and luminance flick- 
er functions. Color-opponent cells re- 
spond better to chromatic changes at low 
temporal frequencies and better to lumi- 
nance changes at high temporal frequen- 
cies. This phenomenon is due to a fre- 
quency-dependent phase shift between 
the color-opponent responses produced 
by the center and surround mechanisms 
in the receptive field of each of these 
cells. What are spectrally antagonistic 
responses at low frequencies become 
progressively synergistic at high fre- 
quencies. 

We recorded the extracellular im- 
pulses of single ganglion cells in the reti- 
na of monkeys (Macaca mtulatta) anes- 
thetized with sodium pentobarbital 
(Nembutal, 5 mg per kilogram of body 
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weight per hour, injected intravenously), 
paralyzed with gallamine triethiodide 
(Flaxedil, 10 mg kg-' hour-t, injected in- 
travenously), and artificially ventilated; 
CO2 in the expired air was continuously 
monitored and kept within the range of 4 
to 5 percent. Recordings were made with 
glass micropipette electrodes filled with 
3M KCI solutions, which were in- 
troduced into the eye through a closed 
chamber and guided to the retina by a 
hydraulic micromanipulator under direct 
vision (with a modified Bausch and 
Lomb fundus camera). The camera pro- 
vided a means of presenting visual stimu- 
li in Maxwellian view, which could be 
seen in sharp focus on the retinal surface 
(4). The light source was a 1000-W xenon 
arc lamp providing two independent 
beams. Flickering stimuli with equal pe- 
riods of light and darkness were pro- 
duced by a half-sectored disk rotated at a 
focal point in one beam by a variable- 
speed motor and monitored continuously 
by a photocell. The wavelength and en- 
ergy in this beam were changed by nar- 
row-band interference and neutral den- 
sity filters, respectively; sharp cut ab- 
sorption filters (Corning 2408, red; 3482, 
yellow; and 5543, blue) in the second 
beam provided selective chromatic adap- 
tation. Fusion and response latencies to 
increasing flicker frequencies were de- 
termined (+ 1 msec) by superimposing 
10 to 20 responses and stimuli on a 
double-beam storage oscilloscope, which 
provided a continuous monitor of the 
phase relationship of the response to 
the stimulus cycle. 

We classified 385 single ganglion cells 
in the central retina (0? to 12? eccentric- 
ity) according to the position of its recep- 
tive field center and the cone mecha- 
nisms influencing its responses (6). The 
flicker fusion frequencies of 38 cells were 
studied intensively; 30 of these showed 
color opponency. In color-opponent 
cells both center and surround mecha- 
nisms in a cell's receptive field could 
usually be studied separately by an ap- 
propriate choice of wavelength. In gen- 
eral, the flicker fusion frequency of all 
cells increased with the intensity of light 
stimulation. The highest flicker fusion 
frequencies were attained by phasic gan- 
glion cells that did not show color oppo- 
nency. The average flicker fusion fre- 
quency of phasic cells was 62 Hz 
[N = 8, standard deviation (S.D.) = 11]. 
In the parafoveal retina, where such 
phasic cells are common, color-oppo- 
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centers were mediated by the red cone 
mechanism had an average maximum 
flicker fusion frequency of 53 Hz 
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Enchancement of Luminance Flicker by 
Color-Opponent Mechanisms 

Abstract. Color-opponent ganglion cells in the monkey retina respond to lumi- 
nance flicker at high temporal frequencies. Color opponency, which makes these 
cells so selective of wavelength at low temporalfreqtuencies, is progressively lost at 
high frequencies. This loss is due to a frequency-dependent phase shift between the 
responses of spectrally different center and sulrrolund mechanisms in the receptive 
field of each of these cells. Center and surround responses, which are antagonistic at 
low temporal fequencies, become synergistic at high ones, making these cells most 
responsive at high fiequencies to those wavelengths to which they are least respon- 
sive at low freqtencies. 7his phenomenon can explain the diffe,rences between chro- 
matic and luminance flicker in human vision. 
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(N = 12; S.D. = 13). Color-opponent 
cells with green and blue cone mecha- 
nisms mediating the responses of recep- 
tive field centers had lower maximum 
fusion frequencies, 49 Hz (N = 3, 
S.D. = 4) and 38 Hz (N = 2, S.D. = 2), 
respectively. In the fovea the maximum 
flicker fusion frequencies of color-oppo- 
nent cells are lower; those with red, 
green, and blue cone mechanisms sub- 
serving their receptive field centers are, 
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respectively, 33 Hz (N = 5, S.D. = 10), 
36 Hz (N = 6, S.D. = 16), and 29 Hz 
(N = 2, S.D. = 9). 

With increasing flicker frequencies, 
color-opponent cells begin to lose their 
color opponency and consequently their 
color selectivity (Fig. 1A). At low flicker 
rates this cell was excited by long wave- 
lengths (666 nm) and inhibited by short 
wavelengths (456 nm). The converse pat- 
tern of excitation and inhibition occurs 

622 nm 

li Slllllll' Fig. 1. (A) Flicker responses 
of a red ON-center, green OFF- 

|nnI^^ I surround color-opponent gan- 
glion cell at three different fre- 
quencies (low, 1.1 Hz; medi- 
um, 15 to 18 Hz; high, 33 Hz) 

-------------- at three different wavelengths 
M8-C41 of equal energy (104 8 quanta/ 

sec/,um2). The stimulus was 
20? in diameter and presented 
on a white background (20,000 

1E trolands). At medium and high 
6 E frequencies, three oscillo- 

graphic records are superim- 
posed. The response of a 

C'U 
~ " photocell to the light stimulus 

. 3 is shown below each response 
t_ 5 o of the cell. (B) Averaged ac- . 
- tion spectra of nine red-green 

color-opponent ganglion cells 
based on a flicker threshold 
criterion at low (1.2 Hz, filled 
circles) and high (33 Hz, open 
circles) frequencies of stimula- 
tion on a white background of 
20,000 trolands. Curves were 
combined at their mean maxi- 
mum sensitivity; vertical axes 
are split (upper right, lower 
left) to avoid overlap. 
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when the light goes off. Midspectral (530 
nm) light is ineffective because it stimu- 
lates the opposing cone mechanisms sim- 
ilarly so that phases of excitation and in- 
hibition antagonize each other almost 
equally and the modulated response to 
the flickering stimulus is lost. At medium 
flicker rates the effectiveness of mid- 
spectral light begins to increase, and 
modulated responses of the ganglion 
cell, time-locked to the stimulus, are pro- 
duced. At higher flicker rates mid- 
spectral lights become more effective 
than any other for eliciting responses to 
flicker. 

The average action spectra of nine 
ganglion cells showing color opponency 
between red and green cone mechanisms 
(Fig. IB) are based on the quantal energy 
required at different wavelengths to elicit 
a threshold flicker response at low (1 Hz) 
and high (33 Hz) frequencies. At low fre- 
quencies, the lowest thresholds for elicit- 
ing flicker occur in the orange-red and 
(with opposite polarity, that is, with re- 
sponses 180? out of phase) in the blue- 
green parts of the visible spectrum. Mid- 
spectral wavelengths, at the peak of the 
human luminosity function, are inef- 
fective at low frequencies because of col- 
or opponency. The spectral neutral point 
varies among red-green opponent cells 
but is mostly within the range of 500 to 
600 nm. At high flicker rates, the thresh- 
olds of midspectral lights for producing 
flicker decrease, and this region becomes 
more effective than all other regions of 
the spectrum for producing a flicker re- 
sponse in color-opponent cells. 

The reason for this phenomenon lies in 
temporal interactions between the spec- 
trally different center and surround 
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TI XT7 ~ ITT 1 I T 1Fig. 2. (A) Averaged latencies of the first spike of the excitatory response (judged from six to ten 
photographic superpositions) of 21 red-green color-opponent cells plotted against the frequency 

_Y 1[20 _ I|lll of stimulation; ON-excitation was measured from the onset, OFF-excitation from the offset of the 20 
Center light for both center (open circles) and surround (filled circles) excitation. The stimulus was a 

20? spot centered over the receptive field of each cell; the center and surround responses were 
--1 i L t t J [ isolated by an appropriate choice of the test wavelength in the presence of a neutral adapting 
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Frequency (Hz) applied for luminous (red and green light in phase) and chromatic flicker (red and green light out 
of phase, 180?) for the excitations of a red ON-center, green OFF-surround cell (hatched areas) 

at low (1 Hz) and high (25 Hz) rates of stimulation. The red mechanism excites the cell when the light goes on and inhibits it when the light goes 
off; the green mechanism acts conversely. Only the excitatory responses are illustrated. A resonance between center and surround responses 
occurs for chromatic flicker at low and for luminous flicker at high frequencies. 
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mechanism of color-opponent cells. Fig- 
ure 2A shows the average latencies at 
different flicker frequencies of the ex- 
citatory responses generated by the re- 
ceptive field center and surround mecha- 
nisms of 21 color-opponent cells showing 
color opponency between red and green 
cone mechanisms. Excitation from the 
surround occurs later than that from the 
center mechanism in both ON- as well as 
OFF-center cells. The difference de- 
creases with increasing flicker frequen- 
cies but is never eliminated. This fre- 
quency-dependent change in phase dif- 
ference between the responses of center 
and surround mechanisms progressively 
turns the cone antagonism (color oppo- 
nency) so characteristic of these cells at 
low frequencies into synergism at high 
frequencies. 

The way this occurs can be deter- 
mined from latency measurements (Fig. 
2A) for both luminous and chromatic 
flicker; Fig. 2B shows this for a red ON- 

center, green OFF-surround cell. For lu- 
minance flicker a mixture of red and 
green light (equals yellow when in phase) 
was used to stimulate the cell at low and 
high frequencies. At low frequencies the 
latency difference between the response 
of the center and surround mechanisms 
was insignificant relative to the long 
duration of the stimulus. Excitatory 
(hatched blocks) as well as inhibitory re- 
sponses (not shown) produced by the 
two mechanisms were totally out of 
phase, so that they canceled each other. 
Consequently, the cell generated little to 
no modulated response to yellow light at 
low frequencies (7). As flicker frequency 
increased, the difference in latency be- 
tween the responses of center and sur- 
round mechanisms began to turn antago- 
nism into synergism in what appears to 
be a resonance between these two re- 
sponses; that is, the excitatory as well as 
the inhibitory responses in both center 
and surround occurred simultaneously. 
This resonance was most effective at 
precisely those wavelengths which pro- 
duced strong responses from both center 
and surround mechanisms and con- 
sequently had the weakest responses at 
low temporal frequencies. Therefore, ac- 
tion spectra based on flicker criteria for 
color-opponent cells gradually changed 
with frequency; midspectral wave- 
lengths, which are relatively ineffective 
at low, became more effective at high 
flicker frequencies and color opponency 
was progressively lost. The broadband 
and single peaked luminosity function 
based on heterochromatic flicker pho- 
tometry (1) may be an inevitable con- 
sequence of this phenomenon, since all 
cells become single peaked and broad- 
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