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We have applied the recently devel- 
oped Kullback-Leibler nearest neighbor 
(KL-NN) rule approach (1) to the prob- 
lem of automatic classification of station- 
ary electroencephalogram (EEG) time 
series. In that problem, the category or 
state of an individual is classified by 
comparison of his or her EEG with 
EEG's taken from other individuals. The 
computation of a Kullback-Leibler (KL) 
number metric or measure of the dif- 
ference between two different stationary 
EEG time series is a key point of our ap- 
proach. We report here on the automatic 
classification of anesthesia levels LI and 
L3, respectively the anesthesia levels in- 
sufficient and sufficient for deep surgery, 
by machine computations on the EEG 
alone. Extension of the KL-NN rule ap- 
proach to distinguish between more than 
two categories or anesthesia levels does 
not involve any new concepts. 

The anesthesia level EEG data dis- 
cussed here originated in an experiment 
at Vancouver General Hospital. In that 
experiment, 280 epochs of visually 
screened EEG's that were relatively free 
of artifact and reflected stationary halo- 
thane-nitrous oxide anesthesia level 
were collected from 20 individuals in sur- 
gery. The anesthesia levels, determined 
by non-EEG criteria, were classified by a 
single anesthesiologist to eliminate the 
problem of interrater variability for 
EEG's. Details of the surgical anesthesia 
procedures and a review of the status of 
automatic classification of anesthesia 
levels by EEG data appear elsewhere 
(2). The data consisted of 64-second re- 
cordings of four-channel EEG epoch 
data (F4-C4, F3-C3, C4-02, and C3-01 in 
the 10-20 EEG system) analog-frequen- 
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cy modulation recorded through a 0.54- 
to 30-Hz band-pass filter and then digital- 
ly transcribed at 128 samples per second. 
An examination of the available data 
suggested that we confine our attention 
to a two-category classification problem, 
to classify anesthesia levels LI and L3, 
which are, respectively, insufficient and 
just sufficient for deep surgery. The data 
selected for analysis were 73 EEG 
epochs, all the 35 LI EEG epochs avail- 
able and 38 L3 EEG epochs (in sets of 
two to three per individual) from a total 
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of 18 different individuals. The analysis 
was performed on the first 20-second in- 
tervals of each EEG data epoch at a re- 
duced data rate of 128/3 samples per sec- 
ond on d = 4 and d = 2 EEG data chan- 
nel data (C4-02 and C3-01). 

The implicit conjecture in the EEG 
population screening problem is that 
there is sufficient information in the EEG 
alone to achieve clinically acceptable 
levels of discrimination between EEG 
state categories. The credibility of this 
conjecture is strained by evidence of the 
broad intersubject EEG variability. The 
data in Fig. 1, two-channel 20-second 
anesthesia level LI and L3 EEG epochs 
from five subjects, illustrate this broad 
intersubject EEG variability. The LI 
data appear to be relatively homoge- 
neous "fast" EEG's whereas the L3 
data include fast, slow regular, and irreg- 
ular EEG's. The bottom two L3 EEG's 
(labeled F145, L3, S71 and F170, L3, 
S73) appear more similar to LI EEG's 
than to other L3 tracings. No obvious vi- 
sual properties distinguish the LI from 
L3 EEG's. 

A useful statement of the conjecture in 
the EEG population screening problem 
is as follows: given labeled EEG samples 
from two categorical populations, esti- 
mate the theoretically best achievable 
statistical classification performance. 
The use of a KL-NN classification, in 
which one subject's EEG is deleted at a 
time in classification of the labeled EEG 
sample data base, yields that desired es- 
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timate (3, 4). Our specific contributions 
in the development of this methodology 
are (i) the demonstration that KL num- 
bers between second-order stationary 
time series have an optimal minimum 
probability of error classification; (ii) 
time and frequency domain formulas for 
computing the KL numbers; (iii) a dem- 
onstration that KL numbers between 
time series have sufficient metric proper- 
ties for NN rule classification; (iv) the 
development of practical computational 
methods for computing KL numbers; 
and (v) a worked computational example 
using clinical EEG population screening 
classification data that has also been ana- 
lyzed by previously known techniques 
[the last is reported here; the others are 
in (1)]. 

Application of the KL-NN classifica- 
tion rule in the anesthesia level EEG 
classification problem involves the fol- 
lowing steps: (i) Stationary time series 
EEG samples labeled for anesthesia lev- 
el LI or L3 are assumed to be available 
from different individuals (5). (ii) A KL 
number measure of the difference be- 
tween a new, to be classified EEG and 
each of the labeled EEG samples is com- 
puted. (iii) The new EEG is classified as 
is that labeled sample EEG for which the 
KL number is smallest. In a variation of 
the KL-NN rule, the KL-kNN rule, the 
new EEG is classified with the label of 
the majority of its k nearest neighbors 
(for k an odd integer) (3, 4). 

A baseline appraisal of the achievable 
discriminability between the LI and L3 
anesthesia level EEG sample popu- 
lations was obtained by a cross-valida- 
tion study (4, 6). The EEG epochs of a 
single individual at a time were deleted 
from the 18-individual, 73-epoch labeled 
sample EEG data. Each of the deleted 
individual's EEG epochs was classified 
against the remaining 17 individual la- 
beled EEG sample population by the 
KL-NN and KL-kNN rules. The best 
classification results for the d = 2 EEG 
data channels, achieved with the KL- 
3NN rule, were one LI and ten L3 epoch 
classification errors, with a resulting per- 
formance of 97, 74, and 85 percent for 
the LI, L3, and overall correct classifi- 
cation performance, respectively. The 
best classification performance for the 
d = 4 EEG data channels, achieved with 
the KL-NN rule, were one LI and seven 
L3 epoch classification errors, with a re- 
sulting performance of 97, 82, and 89 
percent for the LI, L3, and overall cor- 
rect classification performance, respec- 
tively (7). The performance of the KL- 
NN rules reported here with the anes- 
thesia level EEG data in the EEG popu- 
lations screening problem is perhaps the 
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best automatic EEG clinical classifica- 
tion ever obtained (8). 

We implemented the KL number com- 
putations by time domain parametric 
model computations on the EEG time se- 
ries. That implementation involves the 
following: Let {y1j'(t); t = 1, . . .T; 
j = 0, 1, . . . n} denote the EEG time se- 
ries at time t, the index j = 0 identifies 
the new EEG, and j = 1, . . . identi- 
fies the labeled sample EEG's. (i) Com- 
pute the sample d x d matrix covariance 
function for each of the j = 0, 1, . . . n 
time series. (ii) Fit an autoregressive 
(AR) parametric time series model to 
each EEG time series covariance func- 
tion (9). (The covariance function and 
AR model of each of the labeled sample 
EEG's are assumed to be stored in the 
computer.) (iii) Estimate the KL number 
I(o, m) (m = 1, . . . . m) between the new 
zero-term EEG and each of the labeled 
sample EEG's by the formula 

I(o, m) = ln I- + tr Z f 
I ' o i = i) j= ( 

A('")(i) C(?)(i -j) A'"')(j)' V,,,-1 - d (1) 

In Eq. 1, IAI, trA, A', and A-~ denote the 
determinant, trace, transpose, and in- 
verse of the d x cd matrix A, respectively, 
In denotes the natural logarithm, C(O)(.) 
denotes the sample covariance matrix of 
the new EEG time series, and {A('11(i); 
i 0= , 1, . . . p,,,} denotes the AR model 
coefficients for the mth labeled EEG. Al- 
so, p,,, is the automatically determined 
AR model order and Vj, j = o or m, is 
the residual variance matrix of the jth 
EEG time series that is computed during 
the AR modeling computation (9). These 
computations can be done on mini- 
computers for research applications or 
with array processors or chips for real 
time applications (10). Additional con- 
siderations for the implementation of 
KL-NN rules, such as the consequences 
of alternative EEG normalizations on 
classification performance and KL-NN 
cluster analysis considerations to econo- 
mize on computational and data storage 
burdens, are treated in (1). 

A spectral analysis-discriminant anal- 
ysis method has been dominant for the 
classification of stationary EEG time se- 
ries (11), and for other applications (12). 
In that method, the EEG time series are 
first spectrum-analyzed. Spectral fea- 
tures (typically the average power in the 
sigma, delta, alpha, and beta frequency 
bands and spectral coherences between 
pairs of EEG channels in those frequen- 
cy bands) that are thought to be poten- 
tially relevant for discriminating between 
the alternative classes are abstracted 
from that analysis for each labeled 

sample EEG. Those features are ana- 
lyzed by a stepwise linear, quadratic, or 
other discriminant analysis to determine 
the combinations of best discriminating 
features and to evaluate the correspond- 
ing classification performance. The out- 
standing technical difficulty with that 
method is that it is ad hoc. The problem 
for which that solution is optimum is not 
known. If a comprehensive EEG classifi- 
cation study by all conceivable spectral 
features and discriminant rules does not 
yield satisfactory classification perform- 
ance results, the only technically valid 
conclusion is that "spectral analysis 
doesn't work here." No insight is neces- 
sarily gained by that experiment on the 
theoretically smallest probability of error 
discrimination between the alternative 
EEG classes. The practical shortcom- 
ings of the spectral analysis-discriminant 
analysis approach to the EEG population 
screening problem were apparent in the 
first research with that method ( 1). The 
spectral features that best discriminated 
EEG categories in an individual differed 
for individuals. The loss of discrimina- 
tion efficiency or equivalently a blurring 
of features for discrimination with an in- 
crease in the number of individuals very 
likely explains the meager success 
achieved to date with the classification of 
clinical EEG's (11). 

In contrast with the spectral analysis- 
discriminant analysis method, KL-NN 
rules are "featureless," and they have 
definite optimal properties for minimum 
probability of misclassification (1, 7). 
The KL number is a measure of the dis- 
similarity between time series; it is not a 
property of an individual time series, as 
are spectral features. It is computable by 
either time domain or frequency for- 
mulas (1). With only a relatively small 
number of labeled sample EEG's, the 
KL number metric used with NN or 
kNN classification rules in a delete-one 
classification of the labeled EEG data 
base yields a statistically reliable esti- 
mate of the smallest possible probability 
of EEG misclassification (3, 4). Thus the 
KL-NN rules do yield a test of the im- 
plicit conjecture in the EEG population 
screening problem as well as an imple- 
mentation to realize the best achievable 
classification performance. 
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Singer (2) observed that a lower tem- 
perature was required for an increase in 
liposome permeability (22Na efflux) when 
local anesthetics were present. Local 
anesthetics increase marker molecule 
mobility and fluidity in intact cell mem- 
branes and cell membrane fractions and 
increase the rotation of probe molecules 
dissolved in synthetic protein-free lipid 
bilayers (3). We have shown (4) that pro- 
caine-HCI increases hyperthermic killing 
of an unsaturated fatty acid auxotroph of 
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Escherichia coli. Data obtained with V79 
Chinese hamster lung cells (5) also show 
a potentiation of hyperthermic killing by 
procaine. On the basis of these observa- 
tions, we postulated that local anesthet- 
ics might potentiate the therapeutic ef- 
fect of hyperthermia in treatment of ma- 
lignant disease (4). 

Young adult BDF, mice grafted with 
mammary adenocarcinoma strain CA755 
were used throughout. For transplanta- 
tion, tumors were removed from donor 
mice and a crude suspension was pre- 
pared with the aid of a Snell cytosieve 
(6). When the tumors measured approxi- 
mately 4 mm in mean diameter, the mice 
were randomly assigned to treatment 
groups. Tumor sizes were determined by 
caliper measurement of the maximum di- 
mension. These data will be reported 
separately (7). Responses vary from dis- 
appearance of tumors to delays in 
growth to a reduced rate of growth after 
treatment. 

Mice were anesthetized by intra- 
peritoneal injection of 14 mg of chloral 
hydrate. They were placed on special 
carriers with the tumor-bearing leg 
drawn through an opening for immersion 
in a Tecam constant-temperature bath 
with a TU Tempunit circulating heater 
and a Yellow Springs Instrument tele- 
thermometer thermistor probe. The legs 
of the mice were gently held in place by 
masking tape over the lower portion of 
the limb during heating. The tumor-bear- 
ing legs were exposed to bath temper- 
atures of 42? or 43.5?C (+ 0.1?C) for 1 
hour. Water surfaces were insulated with 
plastic spheres 2 cm in diameter both to 
aid in maintaining constant bath temper- 
ature and to further insulate the remain- 
der of the animals' bodies from heat. The 
air temperature above the water bath at 
the level of the mouse carrier did not ex- 
ceed 37?C. 

Lidocaine-HCI (Elkins-Sinn, Inc.) was 
infused by injection into three areas of 
the tumor in a volume of 0.05 ml (2 mg 
per mouse) within 5 minutes before heat 
treatment. Some comparison groups 
were similarly infused with 0.05 ml of 
isotonic saline. In each experiment, nine 
groups of animals were randomly as- 
signed to a 3 by 3 block design of treat- 
ment regimes with three temperatures 
[room temperature (22? ? 1?C), 42?, and 
43.5?C] (8), and three injection options 
(no injection, saline injection, and lido- 
caine injection). 

There was a significant interaction be- 
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Hyperthermia and Local Anesthetics: 

Potentiation of Survival of Tumor-Bearing Mice 

Abstract. Lidocaine infusion of a CA755 mammary adenocarcinomna growing in 

the hind leg of BDF, mice results in a significant increase in the animials' survival 
when combined with heating for I hour in a 43.5?C water bath. This ability of local 

anesthetics to prolong survival following hyperthermnia is consistent with the hypoth- 
esis that increases in memnbrane fluidity influence sensitivity to heat. In view of the 

extensive clinical experience with local anesthetics, the delay between clinical appli- 
cation and the observation that they potentiate the action of hyperthermia in animals 

may be reduced. 
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