
ether. The GLC analysis of the ether ex- 

tract showed a strong peak for cholester- 

ol, but no peak corresponding to the C26 
sterol could be detected. However, the 

compound could be clearly detected by 
GC/MS analysis (9) of the sample by 
means of selected ion detection tech- 

nique and by monitoring the peaks at 
m/e 352 and 313 (Fig. 2). The estimated 
amount was about 40 ng/ml. 

The C26 sterol (compound 2) was first 
isolated by Idler et al. (10) from the scal- 

lop Placopecten magellanicus, and since 
then several 24-norcholesterol deriva- 
tives were identified in a number of ma- 
rine sources, such as asteroid (A7,22) (11), 
clam (A5'22) (12), jellyfish (A22 and A5'22) 
(13), Tunicier halocynthia roretzi (A22, 

A5'22, and A7,22) (14), and red algae (A22, 
A5322) (15). Two 27-norsterols, 22-trans- 

27-nor-24-methylcholesta-5,22-dien-3/3-ol 
and its A7-isomer, were isolated from the 
asteroid Asterias amurensis (16). But 
those are all from marine sources and are 
minor components of the sterol fraction. 

This appears to be the first case of de- 
tection of a C26 sterol in mammalia. At 

present, we have no information on the 
source or the biosynthesis of this sterol. 
In view of the characteristic symptoms, 
the C26 sterol (produced by an abnormal 
metabolic pathway) may not be a suit- 
able substrate of cholesterol C20,22 lyase 
(cytochrome P 450), which is a key en- 

zyme for steroid hormone biosynthesis. 
Alternatively, the function of cholesterol 

C20,22 lyase might be disrupted for some 

reason, and the degradation of cholester- 
ol side chain may be directed instead to- 
ward production of the C26 sterol. 
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pattern of X-inactivation, once estab- 
lished, is genetically fixed for any given 
cell and its progeny. Much support for 
this theory, most clearly espoused by 
Lyon (3), has been obtained in many spe- 
cies, including man. Davidson et al. (4) 
used cloned fibroblasts from females, 
heterozygous for an X-linked biochemi- 
cal marker [an electrophoretic variant 
of glucose-6-phosphate dehydrogenase 
(G6PD: E.C. 1.1.1.49)], to demonstrate 
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Table 1. Steroid sulfatase activity in cultured fibroblasts from normal individuals, patients with 
X-linked ichthyosis (including the sons of four obligate heterozygotes A, B, C, and D), hetero- 
zygotes for X-linked ichthyosis, and clones derived from these heterozygotes. 

Cholesterol sulfatase 

Fibroblasts N (pmole/mg protein-hour) 

Mean Range 

Control lines 18 4.38 1.10 to 9.20 
Patients with X-linked ichthyosis 30 < 0.15 0 to 0.15 
Heterozygote A 3.13 
Heterozygote B 1.59 
Heterozygote C 6.31 
Heterozygote D 3.47 
Heterozygote A clones 13 2.79 1.15 to 5.26 
Heterozygote B clones 19 2.71 1.42 to 5.13 
Heterozygote C clones 39 4.77 0.96 to 10.45 
Heterozygote D clones 32 3.85 1.80 to 6.33 
Son of heterozygote A (K 111-8) < 0.10 
Son of heterozygote B (F IV-2) < 0.10 
Son of heterozygote C (C 111-8) < 0.10 
Son of heterozygote D (D 111-3) < 0.10 
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Non-Inactivation of an X-Chromosome Locus in Man 

Abstract. Cloned fibroblasts from women heterozygous for X-linked ichthyosis 
(steroid sulfatase deficiency) were examined to see whether or not this locus is sub- 

ject to X-inactivation. Of 103 clones examined, all had normal levels of steroid sulfat- 
ase activity. Two of the women studied were also heterozygous for glucose-6-phos- 
phate dehydrogenase deficiency. This allowed the demonstration that both X 
chromosomes were represented as the active X in various clones and that selection 
did not account for these findings. Thus, the steroid sulfatase locus, like the Xga 
locus to which it is linked, appears to escape X-inactivation in man. 
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that two distinct types of clones could be 
derived in which loci of either the pater- 
nal or maternal X chromosome were ex- 
pressed. Similar studies with hypoxan- 
thine(guanine)phosphoribosyltransfer- 
ase (5, 6), phosphoglycerate kinase (7, 
8), iduronate sulfatase (9), a-galactosi- 
dase (10), phosphorylase B kinase (11), 
and dihydrotestosterone receptor pro- 
tein (12) have been conducted and simi- 
lar bimodality of enzyme expression in 
different clones demonstrated. Clinical 
and histochemical evidence for cellular 
mosaicism in females heterozygous for a 
number of other X-linked mutant alleles 
has also been presented (13). Cytologic 
expression of X-chromosome inactiva- 
tion, coupled with biochemical studies of 
females heterozygous at two X-chromo- 
some loci suggest that X-inactivation 
(Lyonization) encompasses a single and 
entire X chromosome in each normal fe- 
male somatic cell (7, 14). 

The concept of complete inactivation 
of all loci on a given X chromosome has, 
however, been challenged. A number of 
clinical observations suggest that the Xga 
blood group locus, which specifies an X- 
linked red blood cell surface antigen, 
might not demonstrate Lyonization (15). 
However, since Xga is only detectable 
on the surface of red blood cells, a so- 
matic cell genetic approach to prove 
non-Lyonization has not been possible. 
The numerous clinical abnormalities and 
high intrauterine lethality associated 
with X-chromosome aneuploid states in 
man may reflect the requirement at some 
stage of female embryonic development 
for the expression of both sets of some 
X-linked alleles (16). 

Studies in our laboratory have shown 
that deficiency of microsomal steroid 
sulfatase activity is the enzymatic basis 
of a relatively common genetic dermato- 
logic condition, X-linked ichthyosis (17). 
Previous family studies demonstrated 
that the gene specifying this disorder is 
located approximately 10 centimorgans 
from the Xga locus (18). With the estab- 
lishment of a biochemical marker for this 
condition (steroid sulfatase deficiency) 
which is detectable in cultured skin fi- 
broblasts, it has become possible to ask 
whether the steroid sulfatase-ichthyosis 
locus demonstrates the X-inactivation 
phenomenon. To investigate this ques- 
tion, we cloned cultured fibroblasts from 
four female obligate heterozygotes for 
steroid sulfatase deficiency and exam- 
ined the cells for steroid sulfatase activi- 
ty by means of an assay described pre- 
viously (17) (Table 1). Heterozygotes A 
and B are obligate carriers of the steroid 
sulfatase deficiency gene and were desig- 
nated K family 11-2 and F family III-10, 
15 JUNE 1979 
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unlikely. Furthermore, we have demon- 
strated X-linkage of human steroid sul- 
fatase by human-rodent somatic cell hy- 
bridization techniques (20). The second 
alternative is that there has been some 
strong selective pressure operative ei- 
ther in vivo or in vitro which favors the 
growth of cells with normal steroid sulfa- 
tase activity and inhibits the growth of 
sulfatase-deficient cells. In appropriate 
growth and mixing experiments, we have 
not observed such selection against 
steroid sulfatase-deficient cells in vitro. 
To rigorously exclude this possibility 
however, we have made use of the fact 
that subjects C and D are also hetero- 
zygous for G6PD deficiency of the Medi- 
terranean type (21). As indicated in Fig. 
2, when clones from these doubly heter- 
ozygous subjects were examined for 
G6PD activity as well as steroid sulfatase 
activity, clones with normal and defi- 
cient G6PD levels could be identified, 
but all clones had normal levels of ste- 
roid sulfatase activity. Thus, regardless 
of whether the X chromosome bearing 
the normal or the mutant G6PD allele 
was inactivated, steroid sulfatase was al- 
ways expressed. 

The data presented here provide evi- 
dence in a somatic cell system for non- 
Lyonization of an X-chromosome locus. 
It is of particular interest that this locus, 
which affects steroid sulfatase ex- 
pression, is in relatively close proximity 
to another non-Lyonized locus, Xga. It 
should now be possible to utilize X-auto- 
some translocations in somatic cell hy- 
bridization studies to localize cyto- 
logically the noninactivated region of 
the X chromosome which contains these 
two loci. 
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unlikely. Furthermore, we have demon- 
strated X-linkage of human steroid sul- 
fatase by human-rodent somatic cell hy- 
bridization techniques (20). The second 
alternative is that there has been some 
strong selective pressure operative ei- 
ther in vivo or in vitro which favors the 
growth of cells with normal steroid sulfa- 
tase activity and inhibits the growth of 
sulfatase-deficient cells. In appropriate 
growth and mixing experiments, we have 
not observed such selection against 
steroid sulfatase-deficient cells in vitro. 
To rigorously exclude this possibility 
however, we have made use of the fact 
that subjects C and D are also hetero- 
zygous for G6PD deficiency of the Medi- 
terranean type (21). As indicated in Fig. 
2, when clones from these doubly heter- 
ozygous subjects were examined for 
G6PD activity as well as steroid sulfatase 
activity, clones with normal and defi- 
cient G6PD levels could be identified, 
but all clones had normal levels of ste- 
roid sulfatase activity. Thus, regardless 
of whether the X chromosome bearing 
the normal or the mutant G6PD allele 
was inactivated, steroid sulfatase was al- 
ways expressed. 

The data presented here provide evi- 
dence in a somatic cell system for non- 
Lyonization of an X-chromosome locus. 
It is of particular interest that this locus, 
which affects steroid sulfatase ex- 
pression, is in relatively close proximity 
to another non-Lyonized locus, Xga. It 
should now be possible to utilize X-auto- 
some translocations in somatic cell hy- 
bridization studies to localize cyto- 
logically the noninactivated region of 
the X chromosome which contains these 
two loci. 
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achieved with diastereomers (2), as well 
as with chiral stationary phases (3). Simi- 
larly in liquid chromatography, both 
these approaches have led to good sepa- 
rations of, for example, diastereomeric 
dipeptides (4) and helicenes on optically 
active supports (5). 

In contrast, the effect of chiral eluants 
has not been extensively investigated 
(6). We now report a simple procedure 
for the separation of a number of a- 
amino acid enantiomers without the need 
for prior derivatization. 

The method is based on the addition of 
a metal cation-amino acid complex to 
the eluant of a cation-exchange column. 
In the specific application reported, 
Cu2+-proline complexes are dissolved 
(the molar ratio of Cu2+ to proline being 
1/2) in a sodium acetate buffer. After the 
column is equilibrated (7), an amino acid 
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sample is injected and is resolved into its 
enantiomers (Fig. 1). The chromato- 
graphic system in which the experiments 
were carried out had been developed (8) 
for the rapid, highly sensitive ion-ex- 
change analysis of amino acids with the 
use of 5-/tm bead resins. Separation was 
monitored by fluorometry (9) after the 
postcolumn reaction of the eluant with 
o-phthalaldehyde (10). To prevent pre- 
cipitation of copper compounds by the o- 
phthalaldehyde solution, EDTA was 
added to the reagent (2.5 g/liter). o- 
Phthalaldehyde does interact with prima- 
ry but not with secondary amines, so 
that proline does not interfere (nor does 
Cu2+). Because of these circumstances 
the resolutions reported could be ob- 
served. The method is sensitive to pico- 
mole amounts. 

Cysteic acid retention time was taken 
to represent the void volume of the col- 
umn and the detection system (Table 1). 
The order of elution of the enantiomers 
(Fig. la and Table 1) with the chiral 
eluant is the reverse of that found by Ro- 
gozhin et al. (11) and Lefebvre et al. 
(12), who bonded a chiral proline-copper 
complex to the stationary support. This 
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Separation of D and L Amino Acids by 

Liquid Chromatography: Use of Chiral Eluants 

Abstract. An aqueous eluant containing a chiral copper-proline complex effects 
the separation of underivatized amino acid enantiomers on an ion-exchange column. 
The stereoselectivity is ascribed to differences in stability of the diastereomeric 
amino acid-copper complexes formed in solution. A simple change in the chirality of 
the eluant reverses the order of the enantiomer elution. For detection and quan- 
tification of picomole amounts of amino acids, the eluant is monitored for fluores- 
cence after reaction with o-phthalaldehyde, a reagent insensitive to proline but high- 
ly sensitive for amino acids containing a primary amino group. 
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