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* 20,220 
23,525 

* 120-minute sample broken in centrifugation 

30. S. Siegel, Nonparametric Statistics (McGraw- 
Hill, New York, 1956), p. 116. 
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or both. Recent findings appear to rule out an 
essential contribution of peripheral receptors to 
the sympathoadrenal reflex [E. M. Stricker, N. 
Rowland, C. F. Sailer, M. I. Friedman, Science 
196, 79 (1977)]. Adrenal catecholamine output 
during insulin-induced hypoglycemia was dimin- 
ished by the intravenous injections of mannose 
or ,8-hydroxybutyrate, which can serve as alter- 
nate metabolic substrates for the brain. Injec- 
tions of fructose, however, which does not cross 
the blood-brain barrier, were not effective. It ap- 
pears, therefore, that if the necessary receptors 
for the stimulation of this reflex are contained 
within the central nervous system, they must re- 
side in the caudal brainstem between the high 
mesencephalic transections in our subjects and 
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Structure of Physiologically Identified X and Y Cells 

in the Cat's Lateral Geniculate Nucleus 

Abstract. Horseradish peroxidase injected into 18 single, physiologically identified 
geniculate X and Y cells permitted a detailed morphological correlate to be deter- 
mined for the physiological properties of each neuron. Class 1 morphological char- 
acteristics were associated with Y cells, class 3 with X cells, and class 2 structural 
traits were seen in both physiological types. 
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One of the major goals of neuroscience 
is to identify the structural basis of func- 
tion at the single cell level. Recently, this 
has been approached in many neural loci 
by intracellularly injecting dyes, such as 
fluorescent markers or horseradish per- 
oxidase (HRP), into physiologically 
identified cells (1). The HRP seems to 
diffuse throughout the cell into the finest 
processes, and this permits a detailed 
morphological view of the cell com- 
parable to that possible with Golgi im- 
pregnation (Fig. 1). 

We have begun to use this technique 
to relate physiological and morphologi- 
cal classes in the laminated portion of the 
cat's lateral geniculate nucleus. Previous 
morphological studies of this nucleus, 
based mostly on Golgi impregnation of 
cells, have identified three main classes 
of cells found throughout the laminae (2): 
class 1 cells are characterized by the 
largest somata and thick, fairly straight 
dendrites with occasional spinelike ap- 
pendages; class 2 cells, by intermediate 
soma sizes, fine and somewhat curved 
dendrites, and frequent clusters of spe- 
cializations appended at or near dendrit- 
ic branch points; and class 3 cells, by 
small somata, very fine, wavy, and tor- 
tuous dendrites, and frequent clusters of 
complex stalked appendages along these 
dendrites (3). Physiological studies have 
identified the following main cell types 
distributed in all laminae (3-5): X cells 
are relay cells with slowly conducting 
retinal afferents and slowly conducting 
axons to cortex, fairly linear spatial sum- 
mation, small receptive fields, and often 
tonic responses to stimuli of appropriate 
standing contrast; Y cells are relay cells 
with fast-conducting retinal afferents and 
fast-conducting axons to cortex, non- 
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linear spatial summation, relatively large 
receptive fields, and usually phasic re- 
sponses; the rare interneurons (6) have 
not been extensively studied but many 
have receptive field properties similar to 
the X and Y cells that project axons to 
the visual cortex (7). Our preliminary 
data suggest that most Y cells are of 
class 1 and that the morphology of most 
X cells is intermediate between classes 2 
and 3 (8). 

We collected data from normal adult 
cats. The physiological preparation, 
anesthesia, and recording techniques 
were identical to those described exten- 
sively in previous reports (5, 9), with mi- 
nor exceptions noted here. We used fine 
micropipettes, filled with 2 to 3 percent 
HRP (Sigma type VI) in 0.2M KC1 buf- 
fered with 0.05M tris atpH 8.6. The tips 
were beveled to a size < 0.5 ,um and an 
impedance at 200 Hz of 100 to 200 meg- 
ohms. In most experiments, it was nec- 
essary to remove a portion of the over- 
lying cortex 5 mm in diameter and 4 to 8 
mm deep to reach the lateral geniculate 
nucleus with these electrode tips intact 
(10), but occasionally tips reached the 
nucleus successfully without cortical ex- 
tirpation (11). The electrode was inserted 
into the brain through a hydraulically 
sealed chamber. 

Once a geniculate cell was isolated ex- 
tracellularly, its physiological proper- 
ties, including latency to optic chiasm 
stimulation and receptive field character- 
istics, were studied; the neuron was duly 
identified as an X or Y cell (12). If the 
cell was clearly identified as one of these 
types, we advanced the electrode in 1- 

/xm steps until it impaled the neuron. 
Figure 2A illustrates some of the criteria 
for intracellular recording, which include 
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(i) a rapid, 30- to 65-mV drop in the d-c 
potential, (ii) an increase in the action 
potential amplitude to 25 to 70 mV, (iii) 
often a change in the action potential 
waveform to monophasic positive with a 
slight afterhyperpolarization, (iv) the ap- 
pearance of slow potentials, and (v) a re- 
turn to the original baseline d-c level up- 
on withdrawal of the electrode. We 
reinvestigated neuronal properties intra- 
cellularly to verify that we impaled the 
same neuron from which extracellular 
data were obtained. The cell was then 
iontophoretically filled with HRP by ad- 
ministering 200 msec, square-wave de- 
polarizing pulses of 5 to 10 nA at 4 Hz for 
5 to 10 minutes. In many cases, fairly 
normal neural activity was still evident 
upon cessation of iontophoresis (Fig. 
2A). We then withdrew the electrode and 
repositioned it for a new track. The cats 
were maintained for 2 to 24 hours after 
the intracellular HRP injection. They 
were then deeply anesthetized and per- 
fused intracardially with buffered 1 per- 
cent gluteraldehyde and 1 percent para- 
formaldehyde. The brains were stereo- 
taxically removed, sectioned coronally 
at 120 gtm, and reacted with diamino- 
benzidine (13). Some sections were 
counterstained with cresylecht violet. 
Each HRP-filled cell was located in the 
tissue and related to its functional prop- 
erties by means of Sanderson's reti- 
notopic maps of the lateral geniculate nu- 
cleus (14) and a determination of laminar 
location based on ocular dominance. In 
any one lamina, no more than two cells 
were injected, and they were spaced 
> 1 mm apart. 

Figure 1 indicates the type of morpho- 
logical detail seen with these methods 
and represents an X cell with class 3 
morphology. Figure 2D is a line drawing 
of the same cell, and Fig. 2, B and C, 
represents a Y cell with class 1 morphol- 
ogy. The records in Fig. 2A are taken 
from this Y cell. Its axon could be fol- 
lowed into the optic radiation, and en 
route it issued a collateral branch into 
the perigeniculate nucleus just dorsal to 
lamina A (Fig. 2B). Such branching was 
seen in six of ten Y cells, including one 
which had class 2 morphology. This may 
be the anatomical basis of physiological 
evidence for collateral branching of Y 
cell terminals into the perigeniculate nu- 
cleus (7). 

To date, eight X cells and ten Y cells 
have been studied both electrophysi- 
ologically and morphologically. The X 
cells were either completely class 3 in 
morphology (one cell) or had structure 
intermediate between classes 2 and 3 
(seven cells). These latter cells included 
the entire morphological spectrum of 
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nearly total class 3 characteristics 
through nearly pure class 2 structure (8). 
Of the ten Y cells, six had unambiguous 
class 1 morphology, two were of class 2 
(15), and the final two had different mor- 
phology (16). Each of the Y cells had an 

axon that could be traced for at least sev- 
eral hundred micrometers. Although X 
and Y cells shared class 2 character- 
istics, especially in the appearance of 
grapelike clusters at dendritic branch 
points, the Y cells had larger somata and 
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Fig. 1. Photomicrographs of HRP-filled X cell from lamina A1; sections were counterstained 
with cresylecht violet and photographed through a filter (Kodak Wratten 48A) to enhance con- 
trast. This cell, also illustrated in Fig. 2D, has class 3 morphology. (A) Low-power view of cell; 
scale, 100 /m. Many of the processes are out of the plane of focus and are thus not visible. The 
rectangles b, c, and d refer to the higher-power views in (B) to (D), respectively. (B) Higher- 
power view of dendrites and some appendages; scale, 10 txm and applies as well to (C) and (D). 
The filled arrow points to a specialization appended to the dendrite by a fine shaft (partly out of 
focus), which connects with the dendrite at the slight thickening indicated by the open arrow. 
This specialization is designated by the upper, filled arrow in the line drawing of Fig. 2D. (C) 
View of dendrites and complex appendages. The filled arrow points to a dense cluster of 
spheroid specializations (also indicated by the lower, filled arrow in Fig. 2D), and the open 
arrow, to less dense, ovoid specializations. The fine network of processes, which weave in and 
out of the plane of focus, can all be traced in continuity with the soma. (D) View of dendritic 
processes and appendages. The arrow indicates ovoid specializations appended to the dendrite 
by fine stalks. This same cluster is designated in Fig. 2D by the middle, open arrow. 

1115 



A * * * 
ii if I I 1111 11 I i LA 

B 

J,-1I L,, l IJ U 

D 

C 

Fig. 2. Typical electrophysiological and morphological data. The line drawings in (B) to (D) are 
tracings at lOOOx made with the aid of a drawing tube attached to a microscope with a lOOx oil- 
immersion objective. For these drawings, we used a Kodak Wratten 48A or 49B (blue) filter to 
enable us to see the finest processes possible with our optical system. These filters were chosen 
on the basis of their complementary spectral density with respect to the HRP-diaminobenzidine 
reaction product. All drawings are from coronal sections. (A) Electrophysiological records from 
the Y cell illustrated in (B) and (C). The top trace illustrates recording as the electrode came 
close to and perhaps touched the cell membrane (quasi-intracellular record). The action poten- 
tial amplitude was about 18 mV in this condition, whereas just prior to this, during standard 
extracellular recording, it was about < 2 mV. There was a slow 10 mV drop in the resting 
potential as the electrode was advanced. The asterisks indicate responses to a flashing stimulus. 
The second trace shows actual intracellular recording as the electrode impaled the cell. The 
resting potential appeared as a rapid 55 mV drop in the d-c level (indicated by curved arrow). 
The oscilliscope trace dropped off scale at this point and had to be manually repositioned. The 
spike amplitude increased to > 50 mV. Both spontaneous subthreshold slow potentials and 
those leading to a burst of action potentials were seen in the intracellular records (open and 
filled straight arrows, respectively, in this trace). In the third trace, the last two iontophoretic 
pulses for HRP injection (stars) are shown. These pulses swamped the amplifier. The sub- 
sequent recording on line 3 records the cell's activity after 5 minutes of HRP injection. A slight 
decrease (= 5 mV) in resting potential was seen after HRP iontophoresis. The fourth line is a 
calibration pulse (5 mV and 100 msec for lines 1 to 3, and 1.5 mV and 5 msec for line 5). Line 5 is 
a higher-gain, faster-sweep recording taken from line 2. The filled and open arrows refer to the 
corresponding points in line 2. The noise in the recording is due largely to our use of an f-m 
adapter on an a-m tape recorder to store our d-c records; thus these examples do not indicate 
the actual quality of the recording. Nonetheless, the main elements of intracellular recording are 
clear. (B) Lower-power tracing of HRP-filled Y cell with class 1 morphology; scale, 200 jum. 
Geniculate laminae A, Al, and C are indicated, as is the perigeniculate nucleus (PG). The soma 
lies in lamina C as shown, but dendrites extend into the ventral portion of lamina Ai. After a 
curious loop in lamina A1, the axon was followed vertically to the perigeniculate, at which point 
it turns abruptly to the left (laterally). At least one fine collateral was seen in the perigeniculate 
(arrow). (C) Higher-power tracing of soma and dendrites of same cell as shown in (B); scale is 50 
,um and applies as well to (D). Class 1 morphology is indicated by the large, spherical soma, 
cruciate appearance of the dendritic tree which crosses laminar borders, and spinelike dendritic 
appendages (2). (D) Tracing of HRP-filled X cell with class 3 morphology. Antidromic activation 
of this cell was not possible (11). Since it was the only unambiguous class 3 cell in our sample, 
we cannot exclude the possibility that it is an interneuron with monosynaptic input from the 
optic tract and with X cell receptive field properties (7). The soma was found near the center of 
lamina A1, and the dorsal and ventral limits of the dendritic tree occur at the borders of this 
lamina. The arrows indicate structures illustrated by photomicrographs in Fig. 1. Class 3 mor- 
phology is indicated by a small soma, fine, sinuous dendrites with complex appendages, and a 
dendritic tree that remains within a lamina (2). 
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thicker primary dendrites than any of the 
X cells. 

These data are not in complete accord 
with previous proposals for relationships 
between structure and function among 
cat geniculate cells. In this regard, the 
preliminary nature of our data, as well as 
the more indirect and circumstantial evi- 
dence of earlier approaches must be em- 
phasized. Many [see, for example (2, 17, 
18)] have suggested that cells with class 3 
morphology are probably interneurons. 
Since we were unable to activate our on- 
ly pure class 3 cell antidromically from 
the cortex, this point cannot yet be re- 
solved. However, five of our X cells 
were identified as relay cells because of 
antidromic activation from the cortex, and 
these all displayed some class 3 morpho- 
logical characteristics. Therefore, some 
cells with at least partial class 3 morphol- 
ogy are indeed relay cells. This con- 
clusion does not preclude the possibility 
that these cells also participate as pre- 
synaptic elements within the lateral gen- 
iculate nucleus (17). That is, some X 
cells may be relay cells that also partici- 
pate in local geniculate circuits. Among 
the ten Y cells, five were antidromically 
activated from cortex, and all displayed 
an axon that we traced well into the optic 
radiation. 

To date, the most specific structural- 
functional relationships in the cat's later- 
al geniculate nucleus were suggested by 
LeVay and Ferster (18). They proposed 
that morphological class 1 cells are Y 
cells, class 2 cells are X cells, and class 3 
cells are interneurons. They did not, 
however, consider intermediate or un- 
classified morphological types (8). This 
proposal sprang from a number of con- 
verging lines of evidence, including the 
observation that only class I cells seem 
to project axons to cortical area 18, 
whereas cells of both classes 1 and 2 
project axons to cortical area 17; it had 
previously been shown that only Y cells 
project to area 18, whereas both X and Y 
cells project to area 17 (19). Our prelimi- 
nary evidence suggests a slightly dif- 
ferent structural-functional correlation. 
That is, class 1 cells are Y cells, and cells 
with at least some class 3 characteristics 
are X cells. The major class 2 character- 
istic-grapelike clusters at dendritic 
branch points-can be shared by X and 
Y cells, but the Y cells have larger so- 
mata and conspicuously thicker primary 
dendrites than the X cells. Other mor- 
phological types (16) may also occur. 
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Intracephalic Implants: A Technique for Studying Neuronal 

Interactions 

Abstract. Implants of embryonic neural tissue from all regions of the neuraxis 
survive grafting to the brains of adult rats. After implantation, neurogenesis and 
differentiation continue, and connections are formed with the mature host brain. 
Thus, the intracephalic implants provide excellent model systems for studying cellu- 
lar interactions that regulate synaptogenesis and determine the cytoarchitectonic 
organization of developing neural tissues. 
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