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some small mammals such as pocket 
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sleep. 

These results also point to the physio- 
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similar to those of shallow hibernation. 

The function of sleep is typically re- 
garded as the restoration of one or more 
physiological processes degraded during 
prior wakefulness, in spite of a lack of 
concrete empirical support for such an 
interpretation (11). An alternative, but 
not necessarily exclusive hypothesis is 
that SWS evolved as an adaptation for 
energy conservation that partially offset 
the high costs of endothermy (12-14). 
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and included (i) strong positive correla- 
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of SWS in mammals (15), (ii) the parallel 
ontogeny of SWS and thermoregulation 
(14), and (iii) the absence of SWS in ecto- 
therms (13). The finding of a regulated 
decrease in 7,b during SWS indicative of 
reduced metabolism provided direct sup- 
port for this hypothesis (5). Since the 
electrophysiological patterns of SWS 
and shallow torpor are temporally con- 
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controlled by changes from the resting 
membrane potential (7, 8). Therefore, it 
is of interest to determine the elec- 
trophysiological correlates of the com- 
plex behavior of chernokinesis. I have 
made intracellular recordings from cells 
in attractants and repellents. The mem- 
brane potential (Ean) values from these 
recordings are presented here and are in 
agreement with a hypothesis of mem- 
brane potential control of chemokinesis 
(2, 3). 

Accumulation of organisms is associ- 
ated with decreased frequency of avoid- 
ing reaction (FAR) or with decreased 
speed (V) in the area of attractant (5, 9). 
Conversely, dispersal is associated with 
increased FAR or with increased V in the 
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Membrane Potential Changes During Chemokinesis in 

Paramecium 

Abstract. Intracelllhar recordings show that (i) paramecia hyperpolarize slightly in 
attractants and depolarize in repellents that depend on the avoiding reaction (an 
abrupt change of swimrming direction), and (ii) paramecia more strongly hyper- 
polarize in repellents and more strongly depolarize in attractants that depend on 
changes of swimming velocity. These membrane potential changes are in agreement 
with a hypothesis of membrane potential control of chemokinesis in Paramecium. 
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area of repellent (5, 9). However, in 
Paramecium one cannot separately af- 
fect the FAR and the frequency of ciliary 
beating that determines V because both 
are under control at the cell membrane. 
For example, a small hyperpolarization 
will bring the membrane potential away 
from threshold and decrease FAR and will 
also increase the frequency of ciliary 
beating and angle, increasing forward V. 
Note that the decreased FAR accom- 
panies accumulation, and increased 
speed accompanies dispersal of the ani- 
mals. Therefore, not only are the com- 
ponents of chemokinesis inseparable, 
they appear to be opposed by the classi- 
cal mechanisms outlined above. 

Mutations and conditions that elimi- 
nate avoiding reaction have been used in 
determining the contributions of FAR and 
V to chemokinesis (2, 3, 10, 11). Elimina- 
tion of the avoiding reaction abolishes re- 
sponses to only some attractants and re- 

Fig. 1. Intracellular recordings from Para- 
mecium tetraurelia in (a) 5 mM KCI control 
and 5 mM K acetate solutions; (b) 1 mM KCI 
(pH 7.0) control and 1 mM KOH (pH 8.7) so- 
lutions; (c) 0.1 mM KCI control and 0.1 mM 
quinidine-HCl solutions; and (d) 2 mM KCI 
control and 1 mM BaCl2 solutions. Dashed lines 
indicate 0 mV. Horizontal lines in each panel are 
2-second scales; vertical lines are 20-mV scales. 
Recording from paramecia was done by the meth- 
ods of Naitoh and Eckert (25) and Satow 
and Kung (26). Hanging drops were eliminat- 
ed by the use of an inverted microscope. 
Glass microelectrodes filled with 500 mM KCI 
(- 70 to 120 megohms) were used. Tracings 
of Em were used when the potential was again 
stable after a change of bath solution. It was 
estimated that 2 minutes was required for a 
complete change of bath solution. Cells were 
constantly bathed in a solution of 1 mM citric 
acid, 1 mM Ca(OH)2, 1.3 mM tris, pH 7.0, 
with salt indicated above. The exception was 
the pH of 1 mM KOH solution (pH 8.7). 
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pellents. In this manner, I have distin- 
guished two groups of chemicals that 
cause chemokinesis by two different 
mechanisms, I and II (2, 3, 10). In mech- 
anism I, attraction and repulsion are cor- 
related with decreased and increased 
FAR. The associated increase and de- 
crease in velocity seem to be unimpor- 
tant in determining net effect. Moreover, 
in "pawns" [mutants with no avoiding 
reaction (12)] agents of group I do not 
cause appreciable attraction and repul- 
sion. In mechanisms II, it is the response 
swimming velocity that predominates. 
Repulsion is associated with increased V 
and a decrease of FAR to zero, and attrac- 
tion is associated with decreased V due 
to slow swimming and time spent in fre- 
quent turning in the avoiding reaction. 
Pawns are attracted and repelled by 
agents of group II. Attractants I and re- 
pellents II cause the same qualitative 
changes in behavior (decreased FAR and 
increased V) but result in opposite 
chemokinesis behavior. Likewise, repel- 
lents I and attractants II cause qualita- 
tively similar changes (increased FAR and 
decreased V) but have opposite chemo- 
kinesis results. The attractants and re- 
pellents used for intracellular recordings 
were organized in these groups. 

The Em's of cells in attractants I, such 
as acetate (OAc-), and repellents II, 
such as OH-, measured by intracellular 
recording (Fig. 1) were more negative 
than those of the same cells in control so- 
lutions. The Em's of cells in repellents I, 
such as quinidine-HCl, and attractants 
II, such as BaCl2, were more positive 
than the Em's in control solutions, and 
both repellents I and attractants II elic- 
ited frequent action potentials (Fig. 1). 
The membrane potentials of cells in sev- 
eral attractants and repellents and of 
controls are given in Table 1 along with 
measurements of the strengths of the at- 
tractants and repellents. 

Variations in the measurements of Em 
arise from differences in resting Em be- 
tween cells and possibly from gradual 
changes of electrode properties that alter 
apparent resting E,. However, relative 
changes of Em upon changing solutions 
were consistent and in the same direc- 
tion in all cells. To demonstrate this con- 
stancy, the net changes of Em upon 
changing solution from control to test 
and back were measured (Table 2). The 
changes of potential in attractants I and 
repellents II were always hyperpolariz- 
ing and were about twice as large for 
repellents II as for the strongest attrac- 
tant I. The changes in repellents I attrac- 
tant II were consistently depolarizations, 
and the depolarizations in attractant II 
were greater than those in any repellent I. 

There are apparent contradictions in 
the chemokinesis behavior of animals in 
solutions that cause qualitatively similar 
changes in FAR and V but cause opposite 
accumulation and dispersal results. (For 
example, attractants I and repellents II 
both decrease FAR and increase V but 
have opposite chemokinesis results) (2, 
3). A new mechanism of behavior con- 
trol can be invoked for chemokinesis, or 
the observed behavior can be used to in- 
fer electrical events during chemokinesis 
based on the established membrane elec- 
trical control of Paramecium ciliary mo- 
tion (7). I have taken the latter approach 
(2, 3). The resulting simple hypothesis of 
Em control of chemokinesis (Fig. 2) pre- 
dicts that attractants I will cause a slight 
hyperpolarization, causing the charac- 
teristic decrease in FAR and small in- 
crease in V (Fig. 2a). As attractants I 
more strongly hyperpolarize the poten- 
tial, the FAR will drop toward zero, mak- 
ing the attractants less effective for accu- 
mulating animals. As the membrane po- 
tential is more strongly hyperpolarized, 
FAR drops to zero and the velocity in- 
creases become important and cause re- 
pulsion. Hence, repellents II should 
strongly hyperpolarize the Em. In this 
way, the same qualitative change of Em 
and of behavior components can lead to 
two different chemoaccumulation re- 
sults, depending on the magnitude of the 
membrane potential change. 

The hypothesis also predicts a small 
positive shift in potential for cells in re- 
pellents I (Fig. 2a). The positive shift in- 
creases FAR and decreases V. As the 

Repulsion II Attraction I Repulsion I Attraction II 

a Iche 
1.0 

0.0~ ~ AEm 

b Iche 
1.0 '.- 
1.01 

~, 
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,,,~ 
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Fig. 2. (a) Graphical description of membrane 
potential control of chemokinesis. Change of 
membrane potential (AEm) from control (at 
origin) is plotted against the index of chemo- 
kinesis; Iche > 0.5 indicates attraction; 
< 0.5 indicates repulsion (see Table 1 leg- 
end). As chemical stimuli change Em relative 
to control, animals will be attracted or re- 
pelled, depending on the magnitude and direc- 
tion of the Em change. (b) Data from Tables 1 
and 2 plotted as AgEm produced by the attract- 
ant or repellents versus Iche. Scale of AEm is 
different for depolarizing and hyperpolarizing 
stimuli. 
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and repulsion II. The repellent II, OH-, 
caused a stronger negative shift in poten- 
tial than attractants I (-16 mV), which 
was well correlated with the decrease in 
FAR to zero and the repulsion by the re- 
sulting increased V. Repellents I depolar- 
ized the Em by up to +25 mV, while the 
attractant II depolarized even more (+31 
mV). 

Several observations can be made 
about the Em data. Absolute Em is prob- 
ably not the determining factor in attrac- 
tion and repulsion, but rather the magni- 
tude of change of Em from control deter- 
mines attraction and repulsion (Fig. 2b). 
These changes of Em are reversible 
(Table 2), and the strengths of attractants 
and repellents are not simply proportion- 
al to the Em changes they produce (Fig. 
2b). 
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sponse to new ionic environments. With 
time, in the neii cqliition thei r'.11q o.- 
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threshold for action potentials is estab- 
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), 16 0.84 + 0.07 and angle of ciliary beating return to a 
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brane potential control of chemokinesis 
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dispersal) and strength of the response. 
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Membrane electrical change may be a 
mechanism common to most chemo- 

reception systems, while the nature of 
the change varies between systems: 
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polarize in response to attractants (16, 
17), bacteria may hyperpolarize while 
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lents (18) and require a Ca2+ flux across 
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and insects and vertebrates respond to 
food extracts and odors with increased 

frequency or bursts of membrane electri- 
cal activity (20-23). As more measure- 
ments of Em in attractants and repellents 
are made, I would expect that ratios of 

FAR or V in test and control solutions will 

modify the simple idea that changes in 

Em control chemokinesis behavior. 
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Experimental allergic neuritis (EAN) 
and experimental allergic encephalo- 
myelitis (EAE) are autoimmune, de- 
myelinating diseases of the peripheral 
nervous system (PNS) and central ner- 
vous system (CNS); they are classically 
produced in animals by injection of ho- 
mogenates of PNS or CNS tissue, re- 
spectively, with complete Freund's adju- 
vant (1). Experimental allergic neuritis 
can be induced by injection of P2 basic 
protein (BP) of peripheral nerve myelin. 
A peptide from myelin P2 BP is at least 
one of the neuritogenic determinants (2). 
In EAE, the encephalitogen is CNS mye- 
lin BP (3, 4). Another major component 
of CNS and PNS myelin (5), galactoce- 
rebroside (/3-D-galactopyranosyl ceram- 
ide) (GC), is a glycolipid hapten (6, 7) 
and binds specific antibodies in isolated 
myelin (7-9). Antiserum to GC binds GC 
in both central and peripheral myelin in 
sections of rat optic and sciatic nerve, as 
well as in CNS myelin of unfixed spinal 
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cord cultures as demonstrated by in- 
direct immunofluorescence or immuno- 
peroxidase techniques (10). Galactoce- 
rebroside can serve as a cell-surface anti- 
genic marker for oligodendrocytes in 
culture (10). Further, rabbit antiserum to 
GC demyelinates organotypic CNS cul- 
tures and inhibits myelination and sulfa- 
tide synthesis in immature CNS cultures 
(11-13). However, immunization with 
one or two injections of GC has not been 
encephalitogenic (6). We describe here 
the first successful production of EAN in 
rabbits by repeated immunization with 
GC. The distribution of demyelinative le- 
sions seems to correspond to areas 
known to have a defective blood-nerve 
barrier (14, 15). 

Thirty-one male New Zealand albino 
rabbits, weighing 2.3 to 2.7 kg, were sen- 
sitized with GC up to seven or eight 
times following one of three schedules (I 
to III) (Table 1). The immunizing in- 
oculum contained 1 or 2 mg of bovine 
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brain GC (lower spot cerebrosides, 98 
percent with hydroxylated fatty acids) 
(Sigma) and bovine serum albumi- ai 

egg albumin (Sigma) as a carrier proteiin 
(5 mg per milligram of GC), in complete 
Freund's adjuvant (Difco) or, for bhooater 
injections in schedules I1 and II, w/iti-1 

out adjuvant. Galactocerebroside w-at. 
checked for purity by thin-layer chroma- 
tography on silica gel G plate developed 
with chloroform, methanol, and wate- 
(65:25:4, by volume) using six standard 
sphingolipids and phosphoglycerides 
(16). Two spots were obtained. The nma 
jor spot (> 99 percent) had an R, of 0.85 
and the minor spot (< 1 percent) had at 
RF of 0.88, corresponding, respectively, 
to cerebrosides with longer (24 carbon) 
or shorter (16 or 18 carbon) length fatty 
acids. Analysis by thin-layer and gas 
chromatography after L.ydrolysis re- 
vealed that galactose was the only cai 
bohydrate moiety detectable (> 99.9 
percent). Sixteen control rabbits were 
similarly immunized but without G(C 
Since results with the three schedules 
did not vary significantly, we will d5- 

scribe the clinical, patholog-ical, an d 
serological results as grouped data. 

Thirteen of 31 rabbits immunized withi 
GC developed a neurological disorder, 
with onset ranging from day 44 to day 
314 (135 + 21 days, mean + standard er 

ror) after the initial inoculation (Fable 1). 
Rabbits were maintained for a maximum; 
of 1 year. Subacute onset of weight loss, 
tremulousness, ataxia, flaccid paresis, 
and hypesthesia of four limbs were lthe 
main features of the clinical illness (Fig. 
1A). Progress was sometimes rapid: 
quadriplegia and respiratory paresi!, 
were terminal events in three animals: 
less than 2 weeks after onset of signs of 
illness. None of the control rabbits; 
showed neurological abnormalities. 

Animals immunized following sched 
ule I were subjected to electrophysiolog, 
ical studies prior to terminal histological 
examination. The characteristic abnor- 
mality was multifocal conduction bilock 
(Fig. 1, E and F). In animals examirned 
from 2 to 24 weeks after onset of weak 
ness, motor conduction velocities werle 
diffusely slowed (11 mi/sec; normal is 50t 
m/sec), suggesting widespread peripher 
al nerve demyelination. These deec 
trophysiological abnormalities were in 
distinguishable from those found in 
human multifocal demyelinative neu- 
ropathies such as Guillain-Barre syn 
drome (17). 
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Twenty-three GC-immunized rabbits, 
including all 13 paralyzed rabbits at vanri- 
ous clinical stages, and 12 control rabbits 
were killed at corresponding intervals 
between 1 month to 1 year after immuni- 
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Experimental Allergic Neuritis Induced by 
Sensitization with Galactocerebroside 

Abstract. Thirteen of 31 rabbits immunized repeatedly with bovine brain galac- 
tocerebroside developed experimental allergic neuritis, manifested by flaccid paresis 
and hypesthesia of four limbs, 2 to 11 months after the initial inoculation. Elec- 
trophysiological studies revealed multifocal conduction block of peripheral nerves. 
Perivenular demyelinative lesions associated with phagocytic mononuclear cells oc- 
curred in spinal ganglia, roots, and less frequently in distal nerves. 
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