
was close to lo's orbit, probably in the 
range 5.7 to 5.9 R j; (ii) the maximum val- 
ue of the electron density in the torus 
during the flyby was not less than 4500 
cm-3; (iii) the density gradient in the 
equatorial plane was larger inward than 
outward; and (iv) the bulge in the isoden- 
sity curve near 5 RRj was real. 

In summary, the PRA experiment de- 
tected a plasma torus with high electron 
density in the magnetic equator at the 
distance of lo's orbit. The existence of 
this torus must be taken into account in 
theories of Jupiter's radio emissions. 

Space scarcely allows more than a 
brief outline of further implications of 
our encounter data, from which we have 
introduced here only a small subset. 
High-frequency cutoffs apparent in deca- 
metric emission suggest occultation by 
the limb of Jupiter of emission from re- 
gions beyond the limb. Low-frequency 
cutoffs in hectometric emission when 
Voyager was within the plasma torus 
suggest external reflection of waves be- 
low the cutoff frequency. There is clear 
evidence for Faraday effect in decamet- 
ric emission propagating through the 
torus. In a high data rate mode, used for 
a total of a few minutes each day 
throughout the encounter period, we 
have seen millisecond bursts in decamet- 
ric emissions as well as very short bursts 
in the hectometric range. We have 
searched a limited set of these records 
for evidence of lightning, but the analysis 
is not yet conclusive. Finally, we have 
comparisons to make with Voyager 2, 
still bound for Jupiter and arriving there 
on 9 July 1979, with Earth-based stations 
observing Jupiter simultaneously with 
Voyager 1, and with the complementary 
experiments on both spacecraft. 
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Low-Energy Charged Particle Environment 

at Jupiter: A First Look 

Abstract. The low-energy charged particle instrument on Voyager was designed to 
measure the hot plasma (electron and ion energies > 15 and > 30 kiloelectron volts, 
respectively) component of the Jovian magnetosphere. Protons, heavier ions, and 
electrons at these energies were detected nearly a third of an astronomical unit be- 
fore encounter with the planet. The hot plasma near the magnetosphere boundary is 
predominantly composed of protons, oxygen, and sulfur in comparable proportions 
and a nonthermal power-law tail; its temperature is about 3 x 108 K, density about 
5 x 10-3 per cubic centimeter, and energy density comparable to that of the magnetic 
field. The plasma appears to be corotating throughout the magnetosphere; no hot 
plasma outflow, as suggested by planetary wind theories, is observed. The main 
constituents of the energetic particle population (?> 200 kiloelectron volts per nucle- 
on) are protons, helium, oxygen, sulfur, and some sodium observed throughout the 
outer magnetosphere; it is probable that the sulfur, sodium, and possibly oxygen 
originate at Io. Fluxes in the outbound trajectory appear to be enhanced from ~ 90? 
to - 130? longitude (System III). Consistent low-energy particle flux periodicities 
were not observed on the inbound trajectory; both 5- and 10-hour periodicities were 
observed on the outbound trajectory. Partial absorption of > 10 million electron 
volts electrons is observed in the vicinity of the Io flux tube. 
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We report preliminary results from 
measurements obtained with the low-en- 
ergy charged particle (LECP) instrument 
on board the Voyager 1 spacecraft dur- 
ing its traversal of the Jovian magneto- 
sphere. The primary objectives of the 
LECP investigation were to make mea- 
surements at low energies (? 15 keV and 
> 30 keV for electrons and ions, respec- 
tively), to characterize the composition 
of the particle population, to determine 
the particle anisotropies, and to search 
for particle effects associated with lo and 
its flux tube. The instrument consists of 
two basic sensors, the low-energy par- 
ticle telescope (LEPT) and the low-ener- 
gy magnetospheric particle analyzer 
(LEMPA), designed to provide measure- 
ments in the outer and inner magneto- 
sphere, respectively. The LEPT is pri- 
marily a composition instrument capable 
of identifying the major ion species, 
while LEMPA performs basic ion-elec- 
tron measurements at low and high 
energies with good particle separation 
over a large (- 1 to 1011 cm-2 sec-1 sr-') 
dynamic range. The overall sensor com- 
plement contains 23 solid-state detectors 
ranging in area from 1.3 mm2 to 13.8 cm2 
and in thickness from 2.3 gm to 2.4 mm, 
combined in various configurations. An 
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essential feature is a stepping motor 
which rotates the sensors in eight steps 
through 360? in time intervals of either 48 
or 192 seconds. A full description of 
LECP has been given elsewhere (1). 

Overview. The first indication of the 
proximity of the Jovian magnetosphere 
was obtained on 22 January at - 600 Ju- 
piter radii, Rj, when sunward-moving 
ions (> 30 keV) were observed for a brief 
(about 2 hour) period. The frequency and 
duration of such occurrences increased 
as the spacecraft approached Jupiter, 
culminating in a sustained increase at 180 
Rj lasting for approximately 1 day (days 
53 to 54) during which sulfur ions were 
also observed. The anisotropies, compo- 
sition, and spectra indicate a Jovian ori- 
gin for these particles. 

Figure la shows the intensity profiles 
of selected ion and electron channels 
during the inbound traversal of the mag- 
netosphere, which began on day 59 with 
the first bow shock crossing at ~ 85.6 
Rj. There were at least five bow shock 
and magnetopause crossings between 85 
and - 47 Rj, each of which has obvious 
signatures in both the electron and ion 
intensities (Fig. la). The diffuse nature of 
the bow shock boundaries is evident in 
the energetic ions, particularly for the 
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Fig. 1. (a) Measurements of LECP flux (15-minute averages) on the inbound pass to Jupiter. (b) Measurements of LECP flux (15-minute averages) 
in the inner Jovian magnetosphere. 

heavier species (for example, helium on 
day 59). A large peak in heavy ions (pri- 
marily oxygen and sulfur) is observed 
just prior to the last two magnetopause 
boundary crossings late on day 61, with 
no equivalent counterpart in the hydro- 
gen or helium profiles. Additional fea- 
tures shown in Fig. la include several in- 
tensity peaks, some of which are sepa- 
rated by 5 or 10 hours. However, in 
contrast to some reports from the Pio- 
neer 10 encounter (2, 3), a sustained peri- 
odicity of either 5 to 10 hours is not ob- 
served. We note that the measurements 
shown in Fig. la are at lower energies 
than those generally obtained by Pioneer 
10. 

Data obtained during the 3 days sur- 
rounding closest approach are shown in 
Fig. lb; late on day 63 the LEPT sensors 
were turned off and high-energy, high-in- 
tensity detectors in LEMPA were acti- 
vated. The E/34 curve is continued from 
Fig. la, and peaks in intensity at - 4 x 
108 electrons (cm2 sec sr MeV)-1 outside 
the orbit of Io. High-energy electrons are 
counted in channels ESAO (singles rate) 
and EAB 10 (coincidence rate), with peak 
fluxes as indicated; both intensities are 
comparable to those measured by Pio- 
neer 10 (4). The most notable feature of 
the measurements is the effect of lo on 
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particles of various energies. Electrons 
in the million electron volt energy range 
are clearly depleted at the lo L-shell, but 
increase again inside it; the amount of in- 
crease is largest for the highest energy 
(> 10 MeV) electrons. Lower energy 
(~ 130 keV) electrons appear to be gen- 
erally enhanced around the L-shell, in 
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agreement with Pioneer 10 observations 
(5). The effects of absorption are more 
dramatic for low-energy (~ 0.6 MeV) 
ions and energetic (15 MeV) protons; the 
decreases range up to a factor of - 400. 
Preliminary analysis of lower energy 
(~ 30 keV) data suggests that the in- 
tensity of these ions tends to increase 
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Table 1. Abundances of energetic particles relative to oxygen. 

Jupiter's magnetosphere (0.6 to 1.6 MeV per nucleon)* Earth's Solar flare 

El -------- -----------magneto- particle Solar Solar 
mle- Day 60, 1956 to Day 61, 2226 to Day 62, 0230 to sphere (17) events (18) corona system ment 

day 61, 0754t day 62, 0227 day 62, 1230 (0.4 to 1.5 MeV (1 to 20 MeV (19) (20) 
(67 to 59 Rj) (49 to 47 Rj)$ (47 to 40 Rj) per nucleon)* per nucleon)* 

H 1480 6.4 230 - 8700? 4600 1780s 1480 
He 7.4 0.33 3.3 - 125 70 100 103 
C 0.13 <0.02 - 0.22 2.7 + 0.4 0.54 1.0 0.55 
O = 1 -1 -1 -1 - 1 -1 
Na 0.02 to 0.0711 0.03 to 0.0911 0.03 to 0.11 - 0,016 0.005 0.0028 
S 0.35 0.35 0.34 < 0.026 0.0251 0.023 
Fe <0.02 <0.009 <0.02 . 0.15 0.093 0.039 

*Approximate energy range of measurements. tSpacecraft event time. fMay include both magnetospheric and magnetosheath periods. The proton value 
is an average, not included in (17). ?Derived from solar wind He/0 ratio (21). lRange from assumption of either equal amounts of Ne, Na, and Mg or all Na. 

much more quickly inside lo and to ex- 
hibit a peak at periapsis. Data examined 
at the pre-lo peak (0630 to 0655) suggest 
that the He/O ratio at ' 0.3 MeV per nu- 
cleon ranges from about 6 to 16, while 
the H/He ratio is about 3 to 16. Both ra- 
tios are spectrum-dependent and the pro- 
visional numbers quoted here should be- 
come better defined with detailed analy- 
sis. 

The effects of the other Galilean satel- 
lites are rather small. They are most no- 

LECP Voyager 1 
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ticeable in the case of Europa in the low 
energy ions. Effects at Ganymede are al- 
so evident; the situation is more difficult 
to assess for Callisto. We note that after 
about 0700 spacecraft event time (SET) 
on day 65, a modulation has begun in the 
intensities, with minima about 10 hours 
apart and relative minima approximately 
every 5 hours. 

Bow shock and magnetopause cross- 
ing. Spin-averaged (192 seconds) ion and 
electron counting rates and first-order 

104 
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Kinetic energy (keV/nuc) 

Fig. 3. (a) Proton spectrum in the outer magnetosphere together with a convected Maxwellian 
distribution fit 

j(fE, 0) = CEexp -- [f 1- 2 e ) cos 0 +e} 

where j is intensity, M is the particle mass number, Ec is 1/2 Vc2, and Vc is the corotating 
velocity. (b) Oxygen and sulfur spectra in the outer magnetosphere, together with a convected 
Maxwellian distribution fit. 
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particle anisotropies are shown in Fig. 2 
for the interval around the first magneto- 
pause crossing (- 67 Rj). The ion rates 
are enhanced immediately behind the 
bow shock (identified from the low-ener- 
gy electron fluxes in Fig. la). The elec- 
tron and ion rates are enhanced in front 
of the magnetopause (also identified 
from the low energy electron fluxes). In- 
spection of high time resolution data in- 
dicates that the magnetopause is not 
sharply defined on a time scale of several 
minutes. 

Immediately prior to the magneto- 
pause crossing the ion and electron flows 
were away from the planet. Upon cross- 
ing the magnetopause the flows changed 
to the corotational direction. Details of 
the particle counts in each sector at three 
selected time intervals during the magne- 
topause crossing are shown as insets to 
Fig. 2. Prior to the magnetopause cross- 

ing the flow was directed away from Ju- 
piter; during the crossing the flow began 
to change toward the corotational direc- 
tion; after the crossing the flow was 
strongly corotational. It should be noted 
that this is not an azimuthal anisotropy 
caused by the proximity of the magneto- 
pause (6), because it persists for several 
hours after the initial crossing. 

The convected particle flux aniso- 
tropies and the particle energy spectra 
are used to deduce the Jovian hot plasma 
characteristics shortly after the first mag- 
netopause crossing. The angular distri- 
bution of 30- to 54-keV ions in sectors 2, 
3, and 4 (inset to Fig. 3a) can be fitted if 
one assumes that only protons are being 
convected (7) at the corotation speed 
- 800 km/sec; however, the ion counting 
rates in sectors 5, 6, and 7 are far in ex- 
cess of what is expected from protons 
alone. 

Proton spectra from LEPT in sector 4 
are plotted in Fig. 3a. With the ions in 
LEMPA sector 4 also being assumed to 
be protons there is good spectral agree- 
ment over five orders of magnitude be- 
tween the two detector systems. By us- 
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ing this proton spectrum the contribution 
of protons to the ion rate in sector 6 
(corotating direction) can be determined; 
it is shown by the dashed line in the inset 
of Fig. 3a. 

At energies - 100 keV per nucleon the 
abundance ratio for 0/S was about 3 
(Fig. 3b). If we assume this ratio holds 
(for equal particle velocities) at lower 
energies and that the "excess" ions in 
sector 6 are 0 and S, the spectra of 0 
and S over an intensity range of -- 108 
can be deduced, as shown in Fig. 3b. The 
agreement between the LEPT composi- 
tion determinations and the LEMPA 
composition assumptions at - 100 keV 
per nucleon gives confidence in the pro- 
cedure. 

The extended curves in Fig. 3, a and b, 
are convected Maxwellian distributions 
characterized by a temperature T and 
particle number density no. Both T and no 
are adjusted to fit the intensities at the 
lowest three energy intervals for all three 
ion species. All three ion spectra can be 
characterized by a "thermal" Max- 
wellian distribution and a nonthermal tail 
represented by a power law in energy. 
The proton and oxygen number densities 
are similar; the total no is ~ 5 x 10-3 
cm-3; this value compares favorably 
with the density measured by the plasma 
wave instrument (8). The temperature of 
all three ion species is similar, - 3 to 4 x 
108 K. The energy density of the corotat- 
ing ions near the magnetopause is - 190 
eV/cm3, essentially equal to the magnetic 
field energy density. The deviation from 
the "thermal" to the nonthermal com- 
ponent occurs at - 1.5 to 2.5 times the 
characteristic speed (2 kT/m)12; the non- 
thermal spectral index for all compo- 
nents is similar (Fig. 3, a and b). 

Composition. Figure 3b shows that Jo- 
vian magnetosphere composition at the 
first magnetopause crossing is most un- 
usual. Figure 4 shows an element abun- 
dance histogram (elements Z _ 6) for 
the interval just outside and into the final 
magnetopause crossing (Fig. la; 2226 
day 61 to 0227 day 62 SET). Superim- 
posed as a dotted line is a solar flare par- 
ticle histogram measured by LEPT in 
September 1977. Relative to the flare, we 
note the overabundance of 0 and S rela- 
tive to C and Fe in the outer magneto- 
sphere. There is also a small but signifi- 
cant peak at Na, and we can establish an 
upper limit for K at - 20 percent of S. 

Summarized in Table 1 are the mea- 
sured Jovian ion (- 0.6 to 1.6 MeV per 
nucleon) abundances (referenced to 0) 
at three radial distances in the inbound 
portion of the trajectory. Element abun- 
dances of other solar system plasma 
sources are given for comparison, to- 
1 JUNE 1979 
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Fig. 4. Relative Jovian and solar flare particle 
compositions. 

gether with the commonly accepted solar 
system abundances. In view of optical 
observations of S and Na (9), it is prob- 
able that the source of these ions, and 
possibly of 0, is at lo. 

Io flux tube. A prime mission objec- 
tive-passage through or in close prox- 
imity to the lo flux tube-occurred dur- 
ing about 1500 to 1511 SET on day 64. 
The enhancement in low energy electron 
fluxes may be related to a similar elec- 
tron enhancement reported from Pioneer 
10 (5); the extended enhancement seen 
by LEMPA may be because the Voyager 
trajectory was close to the lo orbit for 
nearly an hour before and after flux tube 
passage. 

LECPc 

3000 

2500 

Fig. 5. Particle intensities in the - 
vicinity of the lo flux tube. The in- ? 
terval of magnetic field signature 2000o 
of the flux tube is shown (11). 

The scan-averaged high energy elec- 
tron (> 10 MeV), proton (15 to 26 MeV), 
and low energy ion (0.28 to 5.2 MeV per 
nucleon) fluxes at the time of closest lo 
flux tube passage are shown in Fig. 5. An 
inset shows the pitch angles measured by 
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determine the nature of this deflection 
and compute the strength of a hypotheti- 
cal lo magnetic field from the detailed 
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enhancements of 0 and S, similar to the 

inbound pass composition. Detailed 
composition studies have not been com- 
pleted. 
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sun-spacecraft axis at - 68?) for days 66 
through 72 were consistently sunward, 
with the exception of energetic electrons 
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such flows is shown in Fig. 7, including 
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Discussion. The data presented in this 
report have important implications on 
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sphere [reviewed in (12-14)]. During the 
outbound pass the 5-hour periodicity 
suggests on the one hand that a rigidly 
rotating magnetodisk (2) is probably a vi- 
able model to a distance of - 85 Rj, and 
perhaps to - 130 Rj. On the other hand, 
the data could be consistent with a 
"warped" disk beyond - 85 Rj (15). 
Since neutral sheet crossings were not 
seen after day 69 (11), one would expect 
that the difference in longitude between 
the dipole axis and the observed in- 
tensity peaks would be about 180?. We 
find the intensity peaks tend to occur at 
about 90? to 130? longitude (System III), 
while the dipole axis is located at about 
200? longitude, a difference of 90?. This 
seems to be at variance with the magne- 
todisk model. A 10-hour periodicity is 
predicted by the magnetic anomaly mod- 
el (13). The relation between the particle 
enhancements at about 90? longitude and 
the magnetic anomaly at about 230? lon- 
gitude is not known. Finally, no evi- 
dence was found in the magnetosphere 
inside the magnetopause for radial out- 
flow of hot plasma on either the inbound 
or outbound passes, indicating that a 
"planetary wind" or "breeze" (16) was 
not operating at Jupiter during the Voy- 
ager 1 passage. Flow directions in Fig. 7 
are consistent with convective flow (12) 
which could be a combination of corota- 
tional and field-aligned components re- 
sulting in an overall sunward vector. 
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Voyager 1: Energetic Ions and Electrons 

in the Jovian Magnetosphere 

Abstract. The observations of the cosmic-ray subsystem have added significantly 
to our knowledge of Jupiter's magnetosphere. The most surprising result is the exis- 
tence of energetic sulfur, sodium, and oxygen nuclei with energies above 7 megae- 
lectron volts per nucleon which were found inside of Io's orbit. Also, significant 
fluxes of similarly energetic ions reflecting solar cosmic-ray composition were ob- 
served throughout the magnetosphere beyond 11 times the radius of Jupiter. It was 
also found that energetic protons are enhanced by 30 to 70 percent in the active 
hemisphere. Finally, the first observations were made of the magnetospheric tail in 
the dawn direction out to 160 Jupiter radii. 
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Jovian moons. The CRS experiment 
measures the three-dimensional flow pat- 
tern of the energetic ions as well as their 
detailed composition. Furthermore, the 
near-equatorial trajectory allowed mea- 
surements on both sides of the current- 
sheet region. 

The instrument consists of seven mul- 
tielement particle telescopes that are de- 
signed primarily to study the charge and 
energy spectra of low and medium ener- 
gy galactic cosmic rays (4). During por- 
tions of the encounter, many systems 
were saturated by the high counting 
rates. Those data have either been cor- 
rected or eliminated from this dis- 
cussion. 

Energetic particle morphology. A 
small solar proton event, with no associ- 
ated increase in nuclei with charge 
Z > 6, was in progress prior to the first 
bow shock encounter at 85.6 Rj, and the 
primary flow direction of energetic pro- 
tons (0.4 to 8 MeV) was toward Jupiter. 

Jovian moons. The CRS experiment 
measures the three-dimensional flow pat- 
tern of the energetic ions as well as their 
detailed composition. Furthermore, the 
near-equatorial trajectory allowed mea- 
surements on both sides of the current- 
sheet region. 

The instrument consists of seven mul- 
tielement particle telescopes that are de- 
signed primarily to study the charge and 
energy spectra of low and medium ener- 
gy galactic cosmic rays (4). During por- 
tions of the encounter, many systems 
were saturated by the high counting 
rates. Those data have either been cor- 
rected or eliminated from this dis- 
cussion. 

Energetic particle morphology. A 
small solar proton event, with no associ- 
ated increase in nuclei with charge 
Z > 6, was in progress prior to the first 
bow shock encounter at 85.6 Rj, and the 
primary flow direction of energetic pro- 
tons (0.4 to 8 MeV) was toward Jupiter. 

0036-8075/79/0601-1003$00.50/0 Copyright ? 1979 AAAS 0036-8075/79/0601-1003$00.50/0 Copyright ? 1979 AAAS SCIENCE, VOL. 204, 1 JUNE 1979 SCIENCE, VOL. 204, 1 JUNE 1979 1003 1003 


