
results from a third group (six animals) in 
which AD's were elicited in the ventral 
hippocampus proper without direct acti- 
vation of the ventral subicular cortex. 
Markedly increased activity was found 
bilaterally throughout the ventral hippo- 
campus (Fig. IE) and, to a lesser extent, 
the dorsal hippocampal formation (Fig. 
1F). Variable increases found in the ven- 
tral subicular cortex were associated 
with increased DG uptake in the nucleus 
accumbens, entorhinal cortex, and ba- 
sal, medial, and cortical amygdaloid nu- 
clei, as well as the confluence zone. The 
pattern of increased metabolism seen in 
the lateral septum was similar to that 
found in the dorsal hippocampal group 
but showed increased activity extending 
more ventrally in the ipsilateral lateral 
septum (Fig. 1, G and H). 

When the ventral hippocampus proper 
was stimulated below the threshold for 
eliciting an AD (two animals) (11), a 
more localized pattern of increased ac- 
tivity was found in the ipsilateral hippo- 
campal formation, limited to parts of the 
ventral hippocampus proper and posteri- 
or subiculum. Outside the hippocampal 
formation, increased activity was seen 
only in the dorsal margin of the lateral 
septum. The more frequently stimulated 
animal (11) showed a similar although 
lighter pattern of increased activity con- 
tralaterally in homologous structures. 

Control rats implanted with electrodes 
(eight animals) showed increased activi- 
ty only immediately adjacent to the elec- 
trode shaft. 

This study demonstrates that the site 
of AD initiation within the hippocampal 
formation determines the pattern of in- 
creased activity seen in the temporal 
lobe and basal diencephalon. The close 
correlation between the propagation of 
AD's initiated in the dorsal and ventral 
hippocampus, shown by the DG tech- 
nique, and known hippocampal projec- 
tions (4) supports the concept that hippo- 
campal AD's spread along the same ef- 
ferent pathways used by less intense 
physiological activity. 

Of particular interest is the finding of a 
far more extensive ventral subicular in- 
fluence on hypothalamic structures than 
would be expected from the findings of 
axonal transport studies which show 
ventral subicular projections via the for- 
nix confined primarily to the ventrome- 
dial region and mammillary nuclei of the 
hypothalamus (5, 6). This suggests that 
some of the increased activity seen in the 
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some of the increased activity seen in the 
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It has been shown in our laboratory 
that the ventral hippocampal forma- 
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tion influences the hypothalamus pri- 
marily via nonfornix pathways (8). One 
possibility suggested by our findings 
is that the ventral subicular cortex influ- 
ences the hypothalamus via the amygda- 
la. The amygdala has been found by 
Krettek and Price (12) to project to ante- 
rior, lateral, and ventral premammillary 
regions of the hypothalamus, structures 
all showing increased metabolic activity. 
In the primate we found a high percent- 
age of units in the basomedial nucleus of 
the amygdala responding with short la- 
tencies to ventral hippocampal formation 
stimulation (13). In addition, a direct 
projection from the ventral subiculum to 
the basomedial nucleus of the amygdala 
was demonstrated by Rosene and Van 
Hoesen (6). Increased activity in the 
claustrum associated with ventral subic- 
ular AD's may point to an as yet unde- 
scribed projection, either via the amyg- 
dala or perhaps directly from the ventral 
subicular cortex. 

The DG technique has been shown to 
be highly effective in mapping the dif- 
ferential spread of temporal lobe AD ac- 
tivity initiated in different parts of the 
hippocampal formation. This system 
could be used to determine new hippo- 
campal projections, such as the non- 
fornix pathway or pathways to the hypo- 
thalamus (8). It could also be employed 
to study kindling as well as the actions of 
drugs used in the treatment of epilepsy. 
These models might provide additional 
insight into the nature and treatment of 
this disease. 
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Many neurological disorders are asso- ronal loss a 
ciated with degeneration of discrete pop- containing 
ulations of neuronal elements. Parkin- stantia nigrh 
son's disease, for example, manifested also charact 
primarily by abnormalities of movement trations of ( 
and posture (1), is characterized by neu- cipal meta 
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Brain Grafts Reduce Motor Abnormalities 

Produced by Destruction of Nigrostriatal Dopamine System 

Abstract. In order to determine if brain tissue grafts can provide functional input 
to recipient central nervous system tissue, fetal rat dopamine-containing neurons 
were implanted adjacent to the caudate nucleus of adult recipients whose endoge- 
nous dopaminergic input had been destroyed. The grafts showed good survival and 
axonal outgrowth. Motor abnormalities, which had been induced by the destruction 
of the endogenous dopaminergic input to the caudate, were significantly reduced 
after grafting of the fetal brain tissue. These data suggest that such implants may be 
potentially useful in reversing deficits after circumscribed destruction of brain tissue. 
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(HVA), in the neo- and paleostriatum 
(caudate, putamen, globus pallidus) and 
substantia nigra (3). 

Current therapeutic approaches to 
Parkinson's disease involve peripheral 
administration of L-dopa, a precursor of 
DA, and DA-like agents. In practice, de- 
spite some dramatic improvements, such 
therapeutic regimens are frequently not 
completely effective (4), or are associat- 
ed with severe untoward side effects (5). 
Many of these difficulties may result 
from (i) use of a precursor rather than the 
transmitter substance itself; (ii) general- 
ized distribution of the drugs in brain 
rather than focal release from terminals 
in discrete areas; and (iii) absence of the 

physiological mechanisms which nor- 
mally regulate transmitter release from 
dopaminergic terminals. We have at- 

tempted to circumvent these problems 
by using central nervous system grafts as 
a source of dopamine in an animal model 
of SN degeneration. We now report that 
SN neurons from fetal rat can be trans- 
planted in juxtaposition to dopamine-de- 
nervated host adult caudate. The grafts 
proliferate extensively in situ and estab- 
lish a behaviorally appropriate functional 
input to the denervated caudate. 

As an experimental model, we chose 
the rat in which the DA system in the SN 
has been unilaterally destroyed by 6-hy- 
droxydopamine (6-OHDA) (6). Within 1 
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Fig. 1. (A) Schematic drawing of 
the nigrostriatal system with DA- 
containing cell bodies in the SN 
innervating neurons in the caud- 
ate nucleus. The right SN neurons 
were destroyed by the 6-OHDA 
injection. This caused the right 
caudate neurons to become super- 
sensitive relative to normal left 
caudate neurons. Thus, systemic 
administration of the DA agonist 
apomorphine acts on the right 
caudate neurons to a greater ex- 
tent than on the left caudate neu- 
rons. This causes the animal to 
walk or rotate in a counterclock- 
wise direction. (B) When a DA- 
containing nerve cell graft is 
placed on the previously dener- 
vated caudate nucleus, the right 
caudate nucleus manifests less su- 
persensitivity, as indicated by a 
reduction in the amount of coun- 
terclockwise rotation. (C) Graph 
of the ratio (expressed percent- 
age) of apomorphine-induced 
turning after grafting to that be- 
fore grafting (mean + standard 
error of mean). 

week after a unilateral injection of 6-OH- 
DA into the SN, DA-containing cells in 
that site, and their axonal terminals in 
the corpus striatum, degenerate; DA 
concentrations in the corpus striatum are 
greatly reduced (7). To compensate for 
the loss of DA, it is postulated that stria- 
tal neurons develop increased sensitivity 
to DA. This supersensitivity is manifest- 
ed by increased numbers of DA receptor 
sites (8) and increased activity of DA- 
stimulated adenylate cyclase (9), and a 
decrease in the threshold of caudate neu- 
rons to the inhibitory effects of iontopho- 
retically applied DA agonists (10). Be- 
haviorally, animals with these lesions 
show pronounced rotation contralateral 
to the lesion after systemic administra- 
tion of the DA receptor agonist apomor- 
phine (Fig. 1A) (11). If a brain graft de- 

veloped a DA input to the denervated 
caudate nucleus, we postulated that the 
supersensitivity, manifested as apomor- 
phine-induced rotation, would be re- 
duced. 

Unilateral destruction of DA cell bod- 
ies in male Sprague-Dawley rats (150 to 
160 g) was accomplished by injection of 
6-OHDA into the right SN and ascending 
DA axon bundle (12). After 2 to 4 
months, the rats were placed in a ro- 
tometer (13) and given a subcutaneous 
injection of apomorphine hydrochloride 
(0.1 or 0.25 mg per kilogram of body 

weight) (14). The number of clockwise 
and counterclockwise turns was record- 
ed separately for each animal at 5-minute 
intervals for 40 minutes (Fig. 1A). Test- 
ing was repeated twice a week for 3 to 4 
weeks. 

Rats that had stable patterns of rota- 
tion (14) were subjected to grafting oper- 
ations. Pieces of fetal ventral mesen- 
cephalon containing the SN or adult sci- 
atic nerve were dissected out and 
injected into the lateral cerebral ventricle 
ipsilateral to the 6-OHDA lesion (15). 
Baseline turning rates were not statisti- 
cally different for the animals in SN and 
sciatic nerve implant groups before 
transplantation (P > .50, F test). 

Four weeks after grafting, animals 
were again tested for rotation in re- 
sponse to the same dose of apomorphine 
(twice a week for 3 to 4 weeks). By and 
large, most animals did not rotate as 
much after grafting as before (Fig. 1, B 
and C), but the reduction in turning was 
significantly greater for animals grafted 
with SN tissue than for animals with sci- 
atic nerve implants. Data were analyzed 
statistically in terms of the ratios of the 
mean turning rate prior to trans- 
plantation, for each of the eight 5-minute 
segments of the 40-minute testing ses- 
sion. A two-way analysis of variance 
(groups by measures) revealed a signifi- 
cant main effect (Fig. 1C) for the type of 
graft (F = 5.36, d.f. = 1, P < .03). The 
main effect of measures (comparing 5- 
minute segments) was not significant 
(16). 

The caudate nucleus and peri- 
ventricular tissue of 12 of the 29 animals 
studied were examined by Falck-Iillarp 
fluorescence histochemistry and a 
double-blind protocol (17). Five of these 
animals had SN grafts and had at least a 
70 percent reduction in their rotatory re- 
sponse to apomorphine (R animals). 
Four of 12 had SN grafts but less than 10 
percent reduction in rotatory response to 
apomorphine (NR animals). The remain- 
ing three had sciatic nerve grafts (con- 
trols). 

Although the sciatic nerve fibers de- 
generated after grafting, the histochem- 
ical studies revealed excellent survival 
and growth of the ventral mesencephalic 
SN grafts (18). Of 30 monoamine-con- 
taining implants examined in nine ani- 
mals, all but one showed large numbers 
of catecholamine- and serotonin-contain- 
ing neurons with a morphology typical of 
adult SN and raphe, respectively (Fig. 2, 
a and b). The catecholamine- and sero- 
tonin-containing cell bodies formed one 
or more dense clusters in the graft which 
were clearly separate. Monoamine-con- 
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taining fibers proliferated extensively 
within the grafts (Fig. 2, c and d) and in- 
vaded the adjacent caudate in all nine an- 
imals with SN implants (Fig. 2). The cat- 
echolamine fibers that grew into the de- 
nervated caudate formed a network only 
in the part of the caudate adjacent to the 
graft. A similar ingrowth was seen into 
the lateral septum. However, no mono- 
amine-containing fibers invaded the cor- 
pus callosum, even at points of attach- 
ment of the graft. Monoamine-containing 
fibers also formed dense sheets of fibers 
within the ependyma of the lateral ven- 
tricle (Fig. 2d). For the most part, ante- 
riorly placed grafts formed well-demar- 
cated structures in the lateral ventricle 
opposed to or fused with the medial sur- 
face of the caudate and lateral surface of 
the septum (Fig. 2e). Some deeper grafts 
lay interstitially, fused with the host 
brain tissue. Transplants that were 
placed more posteriorly in the lateral 
ventricle were usually found adjacent to 
or fused with the fornix and dorsal al- 
veus of the hippocampus (Fig. 2f). There 
was little or no evidence of any scarring 
or pathological disturbances of the host 
striatum. 

We also compared the histochemical 
properties of grafts in animals that 
showed reduced turning after grafting 
with those that did not. Both groups had 
approximately equal mean numbers of 
catecholamine-containing cell bodies per 
animal and proliferating fibers in the 
graft (17, 19). Moreover, the ingrowth of 
fibers into the adjacent caudate was ap- 
proximately equal in both groups. The 
major difference in the two groups was in 
the degree of caudate denervation pro- 
duced by the 6-OHDA injection. The de- 
gree of initial 6-OHDA denervation 
could be estimated by histochemical ex- 
amination of the host caudate, remote 
from the graft, and by counting the re- 
maining DA-containing cells in the host 
SN. In all R animals these areas were 
virtually totally denervated. Every NR 
animal had some residual endogenous 
DA-containing cell bodies in the SN and 
weak to very weak diffuse endogenous 
DA fluorescence in large areas of the 
caudate. A second difference was in the 
location of the graft. The NR animals 
tended to have a more posterior graft lo- 
calization within the ventricle, while R 
animals had a more anterior placement. 

From the above studies, we conclude 
the following: (i) The grafts of fetal SN to 
the lateral ventricle adjacent to the cau- 
date nucleus of the rats survived and 
proliferated. All but one of the grafts ex- 
amined survived without rejection for at 
least 2 months. (ii) Grafting of the fetal 
11 MAY 1979 

Fig. 2. Appearance of grafted monoamine neurons in host brain, as revealed by fluorescence 
histochemistry, 8 weeks after grafting. Before grafting hosts were treated with nialamide, a 
monoamine oxidase inhibitor, to increase intraneuronal monoamine levels. (a) Green-fluores- 
cent, catecholamine-containing nerve cell bodies of the type found in all animals bearing SN 
grafts. Most cell bodies are small or medium-sized, similar in appearance to the DA neurons of the 
normal SN. (b) Yellow-fluorescent, serotonin-containing nerve cell bodies found in the lower 
part of another graft. This particular graft fills the lateral ventricle and is attached to the septum 
medially and to the caudate laterally. (c) SN graft fused to host caudate. The graft (lower left 
triangle) contains dense aggregates of catecholamine fibers. The ependymal lining of the cau- 
date is traversed at several places (arrows) by tissue bridges carrying catecholamine fibers from 
the graft to the parenchyma of the caudate, in which the ingrowing fibers form thin varicose 
terminals. (d) Thick catecholamine fiber plexus from a SN graft covering the ventricular sur- 
faces of the fornix and the caudate. The area photographed is indicated in (f). (e) Schematic 
coronal section illustrating typical graft location and size in the lateral ventricle. (f) The grafts 
often reach as far posteriorally as the level of the fornix, where they contacted the hippo- 
campus; CA, commissura anterior; CC, corpus callosum; CP, nucleus caudatus putamen; F, 
fornix, and S, septum; calibration bars, 50 /xm. 
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SN reversed, to some degree, the behav- 
ioral changes associated with destruction 
of the host nigrostriatal system. (iii) This 
recovery was associated with the growth 
of DA-containing cells and fibers in the 
grafts and into host brain tissue. How- 
ever, from the data reported here, the 
functional recovery cannot be ascribed 
strictly to reinnervation of the caudate; 
release of DA and subsequent diffusion 
from the grafts into the caudate is anoth- 
er possibility. (iv) Incomplete destruc- 
tion of the endogenous DA input, al- 
though sufficient to induce "behavioral 
supersensitivity," may antagonize rever- 
sal of the supersensitivity by a sub- 
sequent SN graft. (v) The small reduc- 
tion in turning seen in control animals 
may result from a disturbance in caudate 
function secondary to grafting proce- 
dure, although histological examination 
did not reveal evidence of caudate in- 
jury. 

Although numerous studies have dem- 
onstrated (i) that mammalian nervous tis- 
sue regenerates to some extent following 
injury (20), (ii) that various parts of the 
mammalian central nervous system can 
be grafted to peripheral tissue (21), and 
(iii) that nonnervous tissue can be graft- 
ed to the brain (22), there have been few 
studies demonstrating that central ner- 
vous system tissue could be grafted to 
and survive in the brain or spinal cord of 
another animal (23). In some studies in 
which the grafted nervous tissue was 
placed into host brain areas, fiber prolif- 
eration and synapse formation have been 
demonstrated (23). However, this is, to 
our knowledge, the first demonstration 
that the grafting of mammalian brain tis- 
sue from one animal to another elicits an 
alteration in the behavior of the recipient 
animal consistent with the normal func- 
tion of the grafted tissue (24). 

Parkinson's disease has a wide variety 
of signs and symptoms; not all of these 
are reliably improved by current thera- 
py. Our data show that catecholamine- 
containing tissue, implanted in proximity 
to the caudate survives, proliferates, and 
can produce improvements in lesion-in- 
duced motor abnormalities. While clear- 
ly much additional research is required 
to establish the safety and long-term sta- 
bility of grafts, there is a possibility that 
such a local catecholamine source could 
offer the patient with Parkinson's disease 
a more physiological treatment than is 
presently available. In this context, it is 
important to explore autografts or homo- 
grafts (or both) of peripheral cate- 
cholamine-containing tissues, such as 
adrenal medulla (25). If further studies 
can establish the efficacy and safety of 
this approach for therapy, it may even- 
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tually be possible to employ techniques 
similar to those that we have used here in 
the treatment of other neurological dis- 
orders where the loss of nerve cells is 
reasonably well circumscribed. 
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trocytosis, abnormal lipofuscin accumulation, 
or reactive macrophages in the transplanted tis- 
sue or host caudate in either graft age group. 
Third, when SN is grafted into the anterior 
chamber of the eye, there is long-term growth, 
survival, and fiber proliferation with little evi- 
dence of toxicity (21). Finally, although there is 
considerably more tissue breakdown in the sci- 
atic nerve grafts, no significant behavioral 
changes are seen. Taken together, these obser- 
vations suggest tissue breakdown or toxic prod- 
ucts in the SN grafts are not significant factors in 
the behavioral change. Proof that this change is 
due to a dopaminergic input, however, requires 
further experimentation. 

25. The adrenal medulla of adult rats survives trans- 
plantation and the catecholamine-containing 
cells elaborate neuronal-like processes which in- 
vade the host tissue [L. Olson, Histochemie 22, 
1 (1970)]. 
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Human Serum Fucosyltransferase and Tumor Therapy Human Serum Fucosyltransferase and Tumor Therapy 

Bauer et al. have described an eleva- 
tion in plasma fucosyltransferase activity 
in plasma of patients with neoplastic dis- 
ease (1). Three assays were performed: 
transfer of fucose onto endogenous 
plasma acceptors, transfer of fucose on- 
to the 2'-position of the terminal galac- 
tose of desialated fetuin (a2-fucosyltrans- 
ferase), and transfer of fucose onto the 
3'-position of the terminal N-acetyl- 
glucosamine of desialodegalactofetuin 
(ac3-fucosyltransferase). While the data 
cannot be disputed, it appears that the 
enzymatic activities they actually mea- 
sured are different from those that they 
described. 

An acceptor with terminal galactose 
and subterminal N-acetylglucosamine 
such as desialated fetuin can accept fu- 
cose in two positions: the 2'-site on the 
terminal galactose and the 3'-unsubsti- 
tuted position on the subterminal N-ace- 
tylglucosamine (2). Only with a different 
acceptor such as phenyl-,3-galactoside 
(3) can ao-fucosyltransferase be mea- 
sured unambiguously. The use of an ac- 
ceptor with a terminal N-acetylgluco- 
samine appears to measure transfer of 
fucose onto. an internal asparagine- 
linked N-acetylglucosamine (4), not onto 
the 3'-position of the terminal N-acetyl- 
glucosamine. Watkins does mention 
transfer onto the 3'-position in the sum- 
mary of (2), but in the text and in (5), it is 
clear that the author means an N-acetyl- 
glucosamine residue subterminal to ga- 
lactose. What Bauer et al. call a2-fuco- 
syltransferase is therefore a mixture of 
a2- and a:3-fucosyltransferases, while the 
so-called a:3-fucosyltransferase is some- 
thing else. 

Since plasma may contain endogenous 
acceptors for several fucosyltransfer- 
ases, it seems unlikely that the activity of 
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any individual enzyme can be deduced 
by subtraction of an "endogenous" level 
of activity from results obtained by addi- 
tion of an exogenous acceptor. Further- 
more, we have shown (6) utilizing N-ace- 
tylglucosamine terminal acceptors that 
the plasma level of fucosyltransferase 
rises markedly during bone marrow hy- 
perplasia after chemotherapy. A specific 
inhibitor of endogenous activity of other 
plasma fucosyltransferases was used in 
the latter study. In order to delineate 
fucosyltransferase elevation related to 
neoplasia from an elevation related to re- 
generation of a normal marrow popu- 
lation after drug therapy, it is therefore 
necessary to know your acceptor. 

DAVID KESSEL 
Department of Oncology, Wayne 
State University School of Medicine, 
Detroit, Michigan 48201 
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Kessel's comment (1) on our report (2) 
was surprising since he and his co-work- 
ers use, in principle, the same assay sys- 
tem as we (3). 

The hydrogen ion-dependent fucosyl- 
transferase adds fucose primarily to the 
terminal galactose residues of both gly- 
coproteins (4) and glycolipids (5) by 
forming (1 -> 2) linkages. Only when us- 
ing a low molecular weight acceptor such 
as N-acetyllactosamine are considerable 
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amounts also transferred to N-acetyl- 
glucosamine (6). Though N-ethyl- 
maleimide (NEM) preferentially, not ex- 
clusively, inhibits a,o-fucosyltransferase, 
a:r-fucosyltransferase can be affected as 
well. It has been recently reported (7) 
that in a patient with leukemia, the activ- 
ity of a:-fucosyltransferase was inhibited 
by 55 percent in the presence of 3.3 mM 
NEM. The determinations are further 
complicated by our observations that (i) 
NEM can be less effective when inhib- 
iting serum ac-fucosyltransferase of pa- 
tients with recurrent malignancy, and (ii) a 
fucosyltransferase with different charac- 
teristics probably occurs in the serum of 
tumor patients (8). Thus, that addition of 
NEM is suitable when differentiating un- 
equivocally between the two major hu- 
man fucosyltransferases is probably re- 
stricted to normal subjects and certain 
cases of neoplasia. 

We determined the acceptor for a:3- 
fucosyltransferase from the literature (5, 
6). Our report (2) states that aot-fucosyl- 
transferase adds L-fucose at the C-3 
atom of N-acetylglucosamine. Since a 
terminal N-acetylglucosamine on the ac- 
ceptor is essential for enzyme activity 
(9), and since this prerequisite is fulfilled 
by desialodegalactofetuin, desialofetuin 
(as used as the acceptor for ca2-fucosyl- 
transferase) is a very poor acceptor for 
oa:-fucosyltransferase. 

The observation of elevated plasma 
fucosyltransferase activity during bone 
marrow hyperplasia does not contradict 
our findings. We had previously demon- 
strated (10) that a substantial increase of 
serum glycosyltransferases (apart from 
deterioration of cell function) is due to 
proliferative and secretory processes of 
neoplastic or even normal cells. 

CHRISTIAN H. BAUER 
Biochemisches Institut der Albert- 
Ludwigs-Universitit, Hermann-Herder- 
Str. 7, D-7800 Freiburg, Germany 
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amounts also transferred to N-acetyl- 
glucosamine (6). Though N-ethyl- 
maleimide (NEM) preferentially, not ex- 
clusively, inhibits a,o-fucosyltransferase, 
a:r-fucosyltransferase can be affected as 
well. It has been recently reported (7) 
that in a patient with leukemia, the activ- 
ity of a:-fucosyltransferase was inhibited 
by 55 percent in the presence of 3.3 mM 
NEM. The determinations are further 
complicated by our observations that (i) 
NEM can be less effective when inhib- 
iting serum ac-fucosyltransferase of pa- 
tients with recurrent malignancy, and (ii) a 
fucosyltransferase with different charac- 
teristics probably occurs in the serum of 
tumor patients (8). Thus, that addition of 
NEM is suitable when differentiating un- 
equivocally between the two major hu- 
man fucosyltransferases is probably re- 
stricted to normal subjects and certain 
cases of neoplasia. 

We determined the acceptor for a:3- 
fucosyltransferase from the literature (5, 
6). Our report (2) states that aot-fucosyl- 
transferase adds L-fucose at the C-3 
atom of N-acetylglucosamine. Since a 
terminal N-acetylglucosamine on the ac- 
ceptor is essential for enzyme activity 
(9), and since this prerequisite is fulfilled 
by desialodegalactofetuin, desialofetuin 
(as used as the acceptor for ca2-fucosyl- 
transferase) is a very poor acceptor for 
oa:-fucosyltransferase. 

The observation of elevated plasma 
fucosyltransferase activity during bone 
marrow hyperplasia does not contradict 
our findings. We had previously demon- 
strated (10) that a substantial increase of 
serum glycosyltransferases (apart from 
deterioration of cell function) is due to 
proliferative and secretory processes of 
neoplastic or even normal cells. 
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