
These examples illustrate the kinds of 
conditioned alterations exhibited by 
single units in response to the unrein- 
forced stimulus. With respect to the 
CS+, our findings of conditioned modifi- 
cation of firing pattern in single elements 
of parastriate cortex are similar to those 
previously reported (10, 11). The unique 
feature of the present study was the dem- 
onstration of conditioned responses to 
the unreinforced stimulus. Cells exhib- 
ited modification which was selective for 
reinforcement contingency; that is, they 
changed either to the CS+ or to the CS-. 
Thus far, we have not observed any 
single cell that has exhibited conditioned 
alteration to both CS+ and CS-. The 
number of cells that showed selective 
change to CS- (13 out of 86) was approx- 
imately equal to the number exhibiting 
modification to CS+ (10 out of 86) (12). 

Differences in the conditions neces- 
sary for producing conditioning were al- 
so apparent between cells which exhib- 
ited modification in response to either 
the CS+ or CS-. In general, a modifica- 
tion to CS+ did not take place unless 
there was a distinct cellular response to 
shock. Such was not the case for cells 
selectively responsive to CS-. The latter 
often did not respond to the UCS direct- 
ly, although clear-cut changes in the lo- 
cal field potentials indicated that the 
UCS did influence other elements of the 
same population (Fig. 1, panels 3, 8, 12, 
and 14). 

We think that these results demon- 
strate a possible neural substrate of con- 
ditioned inhibition (13). The existence of 
single units exhibiting selective condi- 
tioned modification to the CS- suggests 
that the circuitry mediating conditioned 
inhibition contains elements not in- 
volved in conditional excitatory pro- 
cesses, at least at the level of parastriate 
cortex. A more definitive demonstration 
of such functional distinctiveness would 
require that in a test where reinforce- 
ment contingencies are reversed, a cell 
showing modification in response to the 
CS- originally would again be modified 
in response to the new CS-. A cell show- 
ing conditioned alteration to CS+ would 
be expected to exhibit similar faithful- 
ness to its original reinforcement contin- 
gency. Yet, even without this most per- 
suasive test, such qualitative specificity 
as we have described provides a further 
example of cell-specific behavior in 
learning comparable to the precise tun- 
ing to other aspects of enviroen r.nt and 
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excitation and inhibition would not nec- 
essarily be predicted from behavioral re- 
search. Yet the latter deals only with 
outcomes, that is, with the final motor 
end product. At an earlier stage in the 
encoding of experience, it appears that 
conditioned inhibitory and excitatory 
processes involve separate neuronal sys- 
tems. Further analysis of the cellular 
constituents of these separate systems 
may provide direct information on the 
time-course and kinetics of these 
processes at the neuronal level. 
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An important and intriguing question 
of human neurobiology concerns the 
relationship between the two cerebral 
hemispheres. Salamy has observed that 
"latency differences between ipsilateral 
and contralateral somatosensory evoked 
potentials show maturational trends in 
keeping with the myelogenic timetable 
and development of the corpus callo- 
sum" (1, p. 1409). If these differences 
reflect a maturation of the corpus callo- 
sum, this work is of pgcat interest. We 
believe, however, that the activity of only 
the faster callosal axons is likely to be 
measured by this technique. If we as- 
sume that only one synapse is involved, 
and thereby subtract 0.5 msec from the 
adult values given by Salamy, the esti- 
mated interhemispheric conduction time 
of the P2, P1, and N1 components of the 
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evoked potential may be considered 
to be 3.0, 6.5, and 7.5 msec, respec- 
tively. 

Given an interhemispheric conduction 
distance of approximately 100 mm, the 
axonal conduction velocity of impulses 
mediating such information is approxi- 
mately 13 to 33 m/sec. Such axon con- 
duction velocities might be expected to 
be mediated by myelinated axons 2.4 to 
6.0 ,um in diameter (2). Yet Tomasch re- 
ports fewer than 10 percent of human 
callosal axons to be more than 2.5 /m in 
diameter (3). Most myelinated axons are 
less than 1.5 /xm in diameter, and fully 40 
percent of callosal axons were found to 
be unmyelinated. In the macaque, elec- 
tron microscopy (4) reveals such un- 
myelinated axons to be 0.08 to 0.5 
u/m in diameter. Such axons would 
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be expected to have conduction veloci- 
ties of 0.6 to 1.7 m/sec or less. 

We concur with Salamy that his find- 
ing "may prove useful in assessing de- 
myelinating disease and cases in which 
maturational delay is suspected" (1, p. 
1410), particularly in those cases in 
which fibers of large diameter are af- 
fected. This technique, however, would 
probably not be useful when diseases or 
maturational delay selectively affected 
that great majority of callosal axons that 
conduct slowly. 
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Salamy stated, "In the visual modali- 
ty, a stimulus falling on the left hemiret- 
inae projects exclusively to the right oc- 
cipital lobe and one on the right hemiret- 
inae projects to the left lobe" (1, p. 
1409). The fact is that the projections of 
the human visual system are just the op- 

posite. This error, which unfortunately is 
not too uncommon, probably results 
from confusing the visual hemifields with 
the hemiretinae. Salamy then reversed 
the findings of Andreassi et al. (2) to cor- 
respond to this conceptual error when 
stating that "significantly longer laten- 
cies and lower amplitudes have been ob- 
served over the homolateral cortex af- 
ter hemifield stimulation" (1, p. 1409). 

The actual relationships in the human 
visual system are as follows: stimuli in 
the left visual half-field fall on the right 
hemiretinae, which project to the right 
occipital lobe; conversely, stimuli in the 
right visual half-field fall on the left hemi- 
retinae, which project to the left occipital 
lobe (3). The longer latencies and lower 
amplitudes of visual evoked potentials 
observed over the contralateral cortex 
presumably result from transmission of 
information from the homolateral hemi- 
sphere via the corpus callosum (2). 
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It would be nice to be able to specify 
the fiber population involved in the inter- 
hemispheric transfer of sensory informa- 
tion from surface recordings. The aver- 
aged evoked potential, however, most 
likely represents a summation of fast and 
slow activity within a pathway or path- 

ways. Our inability to precisely identify 
the generator source for each compo- 
nent of the evoked potential makes un- 
tenable the assumptions of a single syn- 
apse and known conduction distance. 
Nevertheless, since the observed matura- 
tional effect (ipsilateral-contralateral laten- 
cy difference) corresponds to myelination 
of the corpus callosum, it is presumably 
the excitation of these fibers that contrib- 
ute most prominently to the elaboration 
of the evoked potential. Therefore, it 
may be primarily these large-diameter 
myelinated fibers which are being mea- 
sured with my technique. 

Gould is quite correct in pointing out 
the discrepancy regarding hemifield- 
hemiretinal projection. This was brought 
to my attention by my colleague J. 
Robinson, but only after the galleys had 
been returned. Gould, however, is incor- 
rect in his interpretation of the Andreassi 
report (1). Longer latencies and lower 
amplitudes were, in fact, observed over 
the ipsilateral hemisphere (with respect 
the stimulated field) as I originally 
stated. More importantly, it should be 
mentioned that this confusion pertains 
solely to the Andreassi reference and has 
no bearing whatsoever on the data pre- 
sented in my report or on the interpreta- 
tion of the results. 
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