
The steering movements monitored in 
our assay have been studied, in the lo- 
cust, at the level of single identified mo- 
tor neurons (22). Further, flight behavior 
survives considerable surgical assault 
(23). It should be possible to record from 
a cricket's nervous system as it performs 
acoustic discriminations and thus to cor- 
relate neural activity with its behavioral 
consequences. 
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mined. Conductance and permeability 
are dynamic properties of the junctional 
membrane and can be altered by a varie- 
ty of experimental treatments (1, 2). Sub- 
stances that can permeate gap junctions 
conceivably serve regulatory or signaling 
functions, and control of intercellular 
flow of small molecules may play an im- 
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portant role in tissue differentiation (3). 
We report here that conductance of junc- 
tions between blastomeres of the am- 
phibian embryo is markedly reduced by 
application of small voltages across the 
junctions. The sensitivity is sufficiently 
great that a physiological role in con- 
trolling intercellular communication is 
plausible. 

Pairs of blastomeres were mechanical- 
ly isolated from axolotl (Ambystoma 
mexicanum) or anuran (Xenopus laevis 
and Rana pipiens) embryos between the 
32-cell stage and late morula. All stages 
and species showed similar electrical 
properties. Cells were placed in physio- 
logical saline solution (4) containing up 
to 0.05 percent colchicine to inhibit mi- 
tosis. Each cell was impaled by two elec- 
trodes for applying current and recording 
voltage. 

Intact cell pairs were always elec- 
trotonically coupled. When small rec- 
tangular current pulses of either sign 
were applied in one cell, constant volt- 
ages were recorded in both cells once the 
membrane capacity had been charged 
(Fig. 1, A and B). Larger current pulses 
resulted in increased input resistance of 
the directly polarized cell and decreased 
electrotonic spread to the other cell (Fig. 
1, A2 to A4 and B2 to B4). Essentially 
identical results were obtained when cur- 
rent was applied in either cell (not illus- 
trated). The coupling coefficients (5) 
could decay from 0.8 or more to 0.1 or 
less. Uncoupling developed more rapidly 
with larger polarizations. The cells re- 
covered to their initial state within 1 sec- 
ond after a pulse was terminated. These 
findings suggest that junctional resist- 
ance increases as a function of trans- 
junctional voltage. The nonjunctional 
membrane of single blastomeres is elec- 
trically linear over a comparable voltage 
range. 

In order to measure junctional cur- 
rents directly, a double voltage clamp 
procedure was devised. Each cell of a 
coupled pair was placed in a separate 
voltage clamp circuit and held at its rest- 
ing potential (-40 to -60 mV). Voltage 
steps were then delivered to one of the 
cells. In this procedure any current flow- 
ing via the junctions from the pulsed cell 
into the second cell is exactly matched 
by current of the opposite polarity inject- 
ed into the second cell, which is supplied 
by its voltage clamp to keep its mem- 
brane potential constant. This trans- 
junctional current (Ij) injected into the 
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Voltage Dependence of Junctional Conductance in 

Early Amphibian Embryos 

Abstract. Isolated pairs of blastomeres from early amphibian embryos (Ambys- 
toma, Rana, Xenopus) are electrotonically coupled. Junctional conductance and 
permeability to the dye Lucifer Yellow are markedly and reversibly decreased by 
moderate transjunctional polarization in either direction. The relationship between 
junctional conductance and transjunctional voltage is sufficiently steep that a physi- 
ological role in regulation of intercellular communication is plausible. 
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clamp experiments, voltage clamp data 
show that junctional conductance de- 
creases as a function of transjunctional 
voltage (Fig. 2). Typically, junctional 
conductance (1 to 4 ,umho) drops to less 
than 10 percent of its resting level with a 
20-mV step (Fig. 2C), but a residual 
voltage-insensitive conductance persists 
even at much greater polarizations. Volt- 
age steps of either polarity to either 
cell produce symmetrical conductance 
changes (6). It was shown by stepping 
both cells to different potentials that 
junctional conductance is independent of 
potential between the inside and the out- 
side of the cells over a range of at least 
+ 30 mV from the resting potential. 
Larger transjunctional voltages cause 
more rapid decay of junctional conduct- 
ance (Fig. 2, A and B) (7). The decreased 
conductance remains stable over pulses 
as long as 50 seconds. 

We have considered that the con- 
ductance decrease could be due to accu- 
mulation of ions such as H+ or Ca2+ adja- 
cent to the junctional membranes. A 
simple current-dependent or accumula- 
tion mechanism could not account for 
the phenomenon described here because 
in the high-conductance condition 
steady-state transjunctional currents can 
be passed that are larger than those re- 
quired to maintain the low-conductance 
condition (Fig. 2, A2 and B2). 

If small molecules pass between cells 
via junctions whose conductance is volt- 
age-dependent, permeability to these 
molecules should be restricted by volt- 
age differences that cause electrical un- 
coupling. Pairs of blastomeres were im- 
paled as in the current clamp experi- 
ments and Lucifer Yellow (molecular 
weight, 443) (8, 9) was injected iontopho- 
retically into one cell by hyperpolarizing 
pulses. When pulses of short duration 
and small amplitude that did not un- 
couple were used, dye passage from cell 
to cell was observed in eight of eight 
pairs within 10 minutes (10). When Luci- 
fer was injected by longer lasting pulses 
of larger amplitude at a frequency that 
held the cells uncoupled, little dye 
passed from cell to cell over periods as 
long as 20 minutes (Fig. 3A). These ex- 
periments indicate that permeability of 
these gap junctions to small molecules is 
voltage-dependent. The results do not 
permit one to distinguish between a 
mechanism of conductance decrease in 
which each member of a large population 
of conductance elements gradually de- 
creases in permeability, and one in 
which there is a decrease in the number 
of conductance elements that are open, 
each with constant unitary conductance. 
We cannot yet infer Lucifer imperme- 
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Fig. 1 (left). Electrotonic coupling between a X 

pair of axolotl blastomeres. The upper trace * ^ 

represents current injected into the cell whose --* --- 
voltage is shown on the middle trace; depolar- -40 -20 20 40 
ization is upward. Electronic spread to the Voltage (mV) 
other cell is shown on the lower trace. For 
small current pulses (of either sign) the coupling rapidly reached a value that was constant over 
the duration of the stimulus (A1 and B1). For slightly larger pulses the potential in the injected 
cell began to increase near the end of the pulse, while the potential in the coupled cell decreased 
(A2 and B2). For larger pulses the potential in the polarized cell increased sigmoidally, while the 
potential in the other cell dropped precipitously (A3 and B3). The uncoupling occurred more 
rapidly with larger pulses (A4 and B4). Fig. 2 (right). Voltage dependence of junctional con- 
ductance. Each cell of a coupled pair was voltage clamped at its resting potential and voltage 
steps were delivered to one cell (middle trace, positive upward). Junctional current (Ij) is the 
current delivered to the other cell to maintain its potential (upper trace, positive current flow in- 
to the stepped cell is indicated by a downward deflection in the lower trace). Junctional current 
fell exponentially to a steady-state value in response to moderate hyperpolarizing (A1) and de- 
polarizing (B1) steps. The current fell more rapidly and to a lower level for larger steps (A2 and 
B2). (C) Relation of steady-state conductance to transjunctional voltage. The conductance 
decreased to about 5 percent of its maximum value with a transjunctional voltage difference of 
30 mV. 

Fig. 3. Voltage dependence of intercellular 
passage of the dye Lucifer Yellow. Hyper- 
polarizing current pulses applied to the cell on 
the left simultaneously injected dye and held 
the cells uncoupled. After 20 minutes the fluo- 
rescent dye was confined to the injected cell 
(A). When hyperpolarizing pulses were ap- 
plied to both cells simultaneously, trans- 
junctional voltage was reduced and junctional 
conductance recovered, allowing dye to cross 
within a few minutes (C). Fluorescence mi- 
crographs (A and C) were obtained with epi- 
illumination with blue exciting light and 18- 
second exposures. As shown in the trans- 
mitted light micrograph (B), the cells are rela- 
tively opaque. The larger cell is 120 /m in di- 
ameter. 
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ability of the residual voltage-insensitive 
conductance. This component is suffi- 
ciently small that passage of Lucifer 
might not have been detected during the 
experiment even if the junctions were 
permeable to it. 

The voltage sensitivity described here 
is found in three amphibian families of 
two orders. Less marked sensitivity is 
observed in blastomeres of the teleost 
Fundulus (unpublished observations). 
Rectification is uncommon at elec- 
trotonic synapses, but where it occurs it 
is generally much faster and probably 
operates by a different mechanism (2, 
11). Records similar to those in Fig. 1 
have been obtained from pairs of Li- 
mulus retinula cells, but the morphologi- 
cal basis is unclear and the mechanism 
may be quite distinct (2, 12). 

The significance of voltage depen- 
dence ofjunctional conductance remains 
to be established. One of the major ques- 
tions about early development is how 
coupled blastomeres acquire and main- 
tain individual developmental programs. 
In several instances specific cells or cell 
groups are. known to uncouple or lose 
their gap junctions at specific times (13), 
and a large difference in resting potential 
can develop between different regions of 
an embryo (14). 

The phenomena described here would 
allow a cell to determine the extent to 
which its cytoplasm communicates with 
that of its neighbors by making small 
changes in its membrane potential. 
Changes in relative ion permeability, ion 
concentration, or electrogenic pumping 
could all lead to differences in resting po- 
tential that rapidly uncoupled the cells 
from each other (15). Additional mecha- 
nisms are required to account for dis- 
appearance of gap junctions, but the rel- 
atively rapid changes reported here pro- 
vide a possible mechanism for short- 
term regulation of cellular communica- 
tion during development. 
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A. L. HARRIS 
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Department of Neuroscience, 
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Comparisons of Frogs, Humans, and Chimpanzees Comparisons of Frogs, Humans, and Chimpanzees 

A few minutes with a basic text on am- 

phibians (1) reveal that the frogs Rana 
and Xenopus differ in at least the follow- 

ing six basic structural traits: (i) tongue 
(present in Rana, absent in Xenopus); 
(ii) centra of anterior vertebrae (pro- 
coelus in Rana, opisthocoelus in Xe- 

nopus); (iii) ribs (absent in Rana, present 
in Xenopus); (iv) urostyle (articulated to 
sacral vertebra by a double condyle in 

Rana, fused to sacral vertebra in Xe- 

nopus); (v) eyelids (functional in Rana, 
nonmovable in Xenoptts); and (vi) tad- 

poles (with horny mouthparts and one 
ventral spiracle in Rana, without horny 

mouthparts and with two lateral spi- 
racles in Xenopus). To the extent that we 
can compare Pan and Homo with re- 

spect to these traits we would find them 
identical. Moreover, there are no mor- 

phological differences between man and 
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chimpanzee of comparable magnitude to 
those which distinguish the two anurans. 
An unbiased assessment of morphologi- 
cal differences between Rana and Xe- 
nopus or Pan and Homo would show just 
what the genetic data show: trenchant 
differences between the two frogs and 
great similarity between the two pri- 
mates. The external shape comparisons 
recently presented by Cherry, Case, and 
Wilson (2) seem wanting. By comparing 
external shape of selected anguilliform 
vertebrates such as eels (Osteichthyes), 
snakes and limbless lizards (Reptilia), 
and caecilians (Amphibia), it could be 
demonstrated that all of these show 
greater resemblance to one another than 
do humans and chimpanzees. 

By selecting appropriate anatomical 
features among vertebrates, one could 
show great similarity between taxa wide- 
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