
metric visual field loci. It is especially re- 
markable that a single region of cortex 
distinguishes between ipsilateral and 
contralateral visual fields in its recurrent 
connections with the LGN, but fails to 
do so in its associational connections 
(15). The two projections may, however, 
arise from different populations of cells, 
as is known to be the case in common 
cats (10). 

The difference in the behavior of the 
two projections suggests that the rules 
governing the formation of these two 
sets of connections are different. We 
suggest that in the formation of associa- 
tional connections, positional informa- 
tion from the retina is still used, but the 
sign of the receptive field position-left 
or right of the vertical midline-is ig- 
nored, and only distance from the mid- 
line is considered. This relaxation of 
specificity would not lead to any wrong 
connections in common cats, since in 
these animals each hemisphere receives 
input only from the contralateral half- 
field. This interpretation must be viewed 
with some caution, however, since it is 
based on the assumption that only optic 
nerve decussation is directly affected by 
the genetic mutation and that more cen- 
tral visual structures develop according 
to normal rules. It could be put on a 
more secure footing if the same mis- 
routing could be produced in common 
cats, perhaps by fetal surgery. 
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Al did project to the cortical representation of 
the contralateral visual field, but the HRP method 
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f,-Adrenergic Regulation of Adenosine 3',5'-Monophosphate 
Concentration in Brain Microvessels 

Abstract. Norepinephrine increases the concentration of adenosine 3',5'-mono- 
phosphate (cyclic AMP) in an incubated suspension of brain microvessels. This re- 
sponse can be matched by other drugs that stimulate the 13 receptors, but the a- 
adrenergic agonist phenylephrine is without effect; 3-adrenergic blockade abolishes 
the response while ae-adrenergic blockade produces no change. The data support the 
contention that cerebral capillary function is subject to adrenergic neural control. 
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Precise control of brain volume, 
through adjustment of cell water and 
electrolyte content, is important for the 
normal function of the brain not only be- 
cause it is confined in the rigid and in- 
distensible environment of the skull (1) 
but also because changes in cell volume 
may affect important functional relation- 
ships between cells (2). This volume 
homeostasis must be achieved in the face 
of the fluctuating osmotic and hydro- 
static forces imposed by the incoming 
blood supply while respecting function- 
ally critical ionic gradients within the 
brain. 

The capillary endothelium, the pri- 
mary barrier between blood and brains 
has several features common to mem- 
branes known to regulate water and elec- 
trolyte permeabilities, such as trout gill, 
toad urinary bladder, frog skin, rabbit 
gallbladder, and mammalian distal neph- 
ron (3), and may have an important role in 
regulation of brain volume and environ- 
ment. There is some indication that brain 
vascular function is under neural influ- 
ence; especially notable is the change in 
water permeability of the brain vascula- 
ture in response to adrenergic stimula- 
tion or centrally administered vasopres- 
sin (3). New techniques available for the 
preparation of very pure microvascular 
tissue from brain tissue now allow direct 
study of the pharmacology of micro- 
vessels in vitro to determine how capil- 
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lary function might be modulated. In the 
experiments reported here we measured 
the effects of neurotransmitters and 
vasopressin on adenosine 3',5'-mono- 
phosphate (cyclic AMP) concentrations 
in isolated microvessels of brain. The cy- 
clic AMP system has been closely linked 
to some neurotransmitter receptors, and 
there is ample evidence relating this sub- 
stance to hormone-induced changes in 
water and electrolyte permeability in 
other tissues (4). 

Brain microvessels were prepared 
from male Sprague-Dawley rats (120 to 
250 g) by the method of Goldstein et al. 
(5). We examined each preparation of 
microvessels by phase-contrast and 
dark-field microscopy to determine the 
nature and proportion of cell types pres- 
ent. We observed virtually no con- 
tamination by neuronal elements. The 
difference between smooth muscle and 
endothelial cells was clear in dark field, 
and we used only those preparations in 
which muscular vessels were estimated 
to constitute less than 5 percent of the 
isolated tissue. 

In each experiment, tissue isolated 
from cerebral cortices of four to six rats 
was pooled and suspended in Krebs- 
Ringer bicarbonate buffer previously 
equilibrated with 95 percent 02 and 5 
percent CO2. Portions (250 Ad) of this tis- 
sue suspension containing approximate- 
ly 30 ,ug of protein were incubated at 
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37?C for 5 minutes, or for the periods of 
time designated, in the presence or ab- 
sence of the test agents. After in- 
cubation, 25 /1. of 50 percent tri- 
chloroacetic acid was added to each 
sample to inactivate the tissue and pre- 
cipitate protein. Supernatant fluid and 
protein were separated by centrifuga- 
tion. After removal of trichloroacetic 
acid by washing with ether, cyclic AMP 
in the supernatant fluid was measured by 
radioimmunoassay (6). Protein was mea- 
sured by the method of Lowry et al. (7). 

Basal levels of cyclic AMP in cerebral 
microvessels were 2 to 3.5 pmole per 
milligram of protein. Norepinephrine 
(100 ,/M) increased cyclic AMP concen- 
trations two- to eightfold. The accumula- 
tion of cyclic AMP was rapid, reaching a 
maximum in 5 minutes, and the elevation 
persisted for at least 10 minutes (Fig. 
1A). Half-maximal effect (ED50) was pro- 
duced by 5 to 10 ,uM norepinephrine. 
Other 8-adrenergic agonists, isoprotere- 
nol and epinephrine, at concentrations of 
100 ,uM, increased the concentration 
of cyclic AMP to the same degree as 
an equivalent concentration of norepi- 
nephrine, but the a-adrenergic agonist 
phenylephrine (100 ,uM) had no effect. 
Dopamine, serotonin, histamine, and 
acetylcholine at 100 ,/M, and 20 ig (per 
milliliter) of angiotensin II and substance 
P were also ineffective. We did observe, 
however, that adenosine increased cy- 
clic AMP by 76 percent, and this effect 
was additive with that of norepinephrine. 
Although vasopressin at a concentration 
of 0.02 I.U./ml has been reported to pro- 
duce maximal accumulation of cyclic 
AMP in other tissues (8), neither this 
concentration nor 2.0 I.U./ml had any ef- 
fect on cyclic AMP concentration in the 
cerebral microvessels. 

Consistent with the finding that only 3- 
adrenergic agonists increased the con- 
centration of cyclic AMP, the 3-adrener- 
gic blocking agent propranolol (100 iaM) 
completely prevented the norepineph- 
rine-induced increase in cyclic AMP, 
whereas 100 uM phentolamine, an a-ad- 
renergic antagonist, did not inhibit the 
action of norepinephrine. 

To our knowledge there has been only 
one other report of the cyclic AMP sys- 
tem in brain microvessels. Joo et al. (9) 
studied adenylate cyclase activity in a 
relatively crude capillary-enriched tissue 
fraction from rat cerebral cortex and 
found significant stimulation by hista- 
mine but not by norepinephrine. How- 
ever, their broken-cell preparation could 
not localize the histamine reactivity to 
vascular or neuronal elements and, fur- 
ther, the tissue homogenization could 
easily have disrupted any coupling be- 
20 APRIL 1979 

Table 1. Accumulation of cyclic AMP in rat 
brain microvessels in response to adrenergic 
agonists (100 pM). The data (presented as 
means ? standard error) were analyzed by 
Student's t-test. The number of samples in 
each group is given in parentheses. 

Agonist Cyclic AMP 
Agonist (pmole/mg protein) 

Control 2.26 ? 0.22 (N = 4) 
Norepinephrine 13.23 ? 1.20* (N = 4) 
Epinephrine 9.49 ? 0.65* (N = 4) 
Isoproterenol 11.04 ? 1.25* (N = 4) 
Phenylephrine 2.33 ? 0.16 (N = 6) 

*P < .001. 

tween adrenergic receptors and adenyl- 
ate cyclase. 

In two additional studies investigators 
measured norepinephrine-stimulated ac- 
cumulation of cyclic AMP in vascular 
endothelial tissue derived from sources 
outside the brain (10, II). Buonassisi and 
Venter (10) studied endothelium cultured 

from rabbit aorta and found a norepi- 
nephrine-stimulated cyclic AMP re- 
sponse which could be fully blocked by 
propranolol. Wagner et al. (11), how- 
ever, discovered both a and / responses 
in capillaries isolated from rat epididym- 
al fat pads. Both groups reported accu- 
mulation of cyclic AMP in response to a 
variety of other substances, such as 
serotonin, histamine, and vasopressin, 
which we tested without success. Al- 
though methodological differences might 
explain this difference in responsiveness 
to substances other than norepinephrine, 
it is perhaps a reflection of a difference 
between brain microvascular endothe- 
lium and other vascular endothelia. 

The demonstration of an anatomical 
association between central noradrener- 
gic fiber varicosities and brain capillary 
endothelium suggests that these vessels 
are innervated (3). This suggestion is 
supported by the observation that stimu- 

Table 2. Effects of adrenergic blocking agents (100 MM) on the response of cyclic AMP in rat 
brain microvessels to norepinephrine (100 pM). The data (presented as means + standard error) 
were analyzed by Student's t-test and are expressed as picomoles of cyclic AMP per milligram 
of protein. The number of samples in each group is given in parentheses. 

Agonist 
Antagonist 

None Norepinephrine 

None 3.05 + 0.16(N = 16) 6.13 + 0.62* (N = 12) 
Phentolamine 2.92 + 0.18(N = 12) 5.70 + 0.49* (N = 12) 
Propranolol 2.10 ? 0.17(N = 12) 3.00 + 0.11 (N = 14) 

*P < .001. 
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Fig. 1. (A) The effect of norepinephrine (NE) on the concentration of cyclic AMP in rat brain 
microvessels as a function of incubation time. The control value for cyclic AMP was 
3.35 + 0.47 pmole per milligram of protein. Both control points (open circles) represent the 
mean ( standard error of the mean) of three samples, whereas each experimental point (closed 
circles) represents four samples. (B) The dose-response curve for rat brain microvessels in- 
cubated for 5 minutes with various concentrations of norepinephrine. The control value was 
2.73 + 0.31 pmole per milligram of protein. The response of microvascular cyclic AMP to NE 
becomes significant at 1 pM (P < .1, Student's t-test). Each point represents the mean (+ 
standard error of the mean) of four samples. 
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lation of the locus coeruleus, the primary 
source of adrenergic neurons in the cen- 
tral nervous system, can reversibly 
change the permeability of the brain vas- 
culature to water. Taken together, these 
functional and anatomical observations 
lead to the hypothesis that brain capillar- 
ies are under neural control. The capil- 
laries might function in a manner similar 
to other membranes known to regulate 
water and electrolyte permeability and, 
as such, contribute to fluid and elec- 
trolyte homeostasis of the brain. Our 
data further support this hypothesis. 

Vasopressin reversibly increases brain 
capillary water permeability when inject- 
ed into the brain ventricle of the rhesus 
monkey (3). In our study, vasopressin 
did not affect the cyclic AMP system of 
brain microvessels in vitro. It is possible 
that vasopressin acts directly at the cap- 
illary by some mechanism unique to 
brain, which does not involve cyclic 
AMP. However, the demonstration by 
Tanaka et al. (12) that intraventricular 
vasopressin alters brain norepinephrine 
turnover in a number of areas, plus the 
discovery by Swanson (13) of an anatom- 
ical interconnection between the norad- 
renergic system and the vasopressin and 
oxytocin systems in brain, argue for nor- 
adrenergic mediation of the vasopressin 
effect in vivo. 

TIMOTHY J. HERBST 
MARCUS E. RAICHLE* 

JAMES A. FERRENDELLI 
Department of Neurology and 
Neurological Surgery, 
Washington University School of 
Medicine, St. Louis, Missouri 63110 
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renergic system and the vasopressin and 
oxytocin systems in brain, argue for nor- 
adrenergic mediation of the vasopressin 
effect in vivo. 
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We found that iron deficiency did in- 
deed prevent porphyria, and no decrease 
in UD was observed in iron-deficient, 
TCDD-treated mice. However, we found 
that iron deficiency also protected mice 
against skin disease caused by TCDD 
and against liver damage. This was se- 
vere in TCDD-treated animals on a nor- 
mal diet but absent from those animals 
previously rendered iron-deficient. 
These results have significance for our 
understanding of the mechanism of tox- 
icity due to TCDD and related com- 
pounds and possibly also for the treat- 
ment of TCDD poisoning in man. 

We obtained C57B1/6J mice aged 6 
weeks from Jackson Laboratories and 
fed half either a synthetic iron-deficient 
diet (5) or laboratory chow (6). The mice 
in the group being rendered iron- 
deficient were anesthetized with ether, 
and 0.2 to 0.25 ml of blood was with- 
drawn from the cavernous sinus of each 
animal twice weekly for 4 weeks; at the 
end of 4 weeks the hemoglobin concen- 
tration had dropped to 5.5 g/dl (7). Two 
of 17 animals died during this prelimi- 
nary procedure. The iron-deficient diet 
was maintained; the groups of animals 
on iron-deficient and regular diets were 
each subdivided into two groups, treat- 
ment and control, and all four groups 
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Iron Deficiency Prevents Liver Toxicity of 

2,3,7,8-Tetrachlorodibenzo-p-Dioxin 

Abstract. The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) causes he- 
patocellular damage and porphyria in C57B1/6J mice, among a wide range of toxic 
effects. We compared the effect of TCDD toxicity in iron-deficient mice with that in 
mice receiving a normal diet. Porphyria did not develop in the iron-deficient animals, 
and these animals were also protectedfrom hepatocellular damage and certain other 
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