
point. This point represents the maxi- 
mum possible degree of metastable su- 
perheating on a given isotherm, and at 
P = 0 it is about 0.9 T.. The equilibrium 
isotherms are horizontal lines in the 
mixed phase, whose position is deter- 
mined by equality of the Gibbs potential 
in the liquid and vapor phases. 

For illustration, assume that the mate- 
rial is superheated to the metastable 
state indicated by the circle in Fig. 1; 
that is, P = 1 bar, T= 170 K, and 
v = 4.0 cm3/g. At this point the internal 
energy is 320 J/g larger than that at the 
boiling point, 120 K. The Rankine-Hugo- 
niot curve centered here is labeled R-H. 
Points to the right of the initial volume, 
v = 4.0, are meaningless and are shown 
as an aid in locating the curve. A shock 
centered on the assumed initial state 
whose end state lies on the equilibrium 
surface in the mixed phase is seen to be 
restricted to a narrow pressure range at 
about 28 bars. Moreover, it represents 
an eigenvalue, or weak, detonation since 
the shock is supersonic with respect to 
the material behind; the isentrope 
through the final shocked state is shown 
as the curve labeled S and clearly has a 
smaller negative slope than the Rayleigh 
line, labeled R (6). 

The detonation velocity cannot be 
evaluated because it is determined by a 
saddle-point singularity of the differen- 
tial equation expressing the relation be- 
tween the specific volume and the reac- 
tion rate in the shock transition (6). It 
therefore depends on the values of the 
reaction rate and viscosity coefficients in 
the final shocked state, and these are not 
known. The velocity can be bounded be- 
low, however, at about 0.5 mm/,/sec. 

The pressure decays in the rarefaction 
wave following the shock along curve S 
until the initial pressure is reached. The 
temperature at that point is 120 K, the 
specific volume is 178 cm3/g, and the in- 
ternal energy is 225 J/g. The degree of re- 
action is 0.45. The difference in internal 
energy between the initial state for the 
shock and the final state behind the en- 
tire wave is therefore (320 - 225) J/g, or 
95 J/g. This energy is extracted as me- 
chanical work and is the effective energy 
of explosion. It is small, as is the detona- 
tion pressure, compared to chemical 
high explosives, for which the energy is 
typically 4000 J/g. However, it is suf- 
ficient to be very hazardous in large 
quantities, and seems to be compatible 
with the magnitude of energy release in- 
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tion pressure, compared to chemical 
high explosives, for which the energy is 
typically 4000 J/g. However, it is suf- 
ficient to be very hazardous in large 
quantities, and seems to be compatible 
with the magnitude of energy release in- 
ferred from observed vapor explosions. 

Whether detonations are the mecha- 
nism for vapor explosions depends not 
only on the thermodynamic require- 
ments, which are seen to be satisifed, but 
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also on the ability of the shock to be self- 
sustaining. That is, initiation of the reac- 
tion must occur in the shock transition 
layer. On the basis of equilibrium ther- 
modynamics alone it appears difficult to 
argue that the shock should be self-sus- 
taining. Thus, the effect of the shock 
pressure is to carry material closer to the 
equilibrium surface and farther from the 
spinodal curve. 

It may be possible, however, that non- 
uniform heating in the shock front causes 
local high temperatures that initiate the 
reaction, analogous to the situation in 
liquid chemical explosives. Small bub- 
bles may nucleate in the metastable liq- 
uid and have insufficient time to grow be- 
fore the shock starts. Shock compres- 
sion of these bubbles can then cause 
local high temperatures. It may even be 
unnecessary for bubbles to have formed. 
Density fluctuations are large in the vi- 
cinity of the spinodal point and corre- 
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While high-molecular-weight hydro- 
carbons possessing a single tail-to-tail 
linkage, such as squalane (1), perhydro- 
/3-carotene (2), and lycopene (3) have 
been reported, all other high-molecular- 
weight isoprenoids found to date in fossil- 
fuel samples possess only head-to-tail 
linkages (4). We now report the discov- 
ery of head-to-head linked isoprenoid 
hydrocarbons of high molecular weight 
in crude oils. This type of linkage was 
only recently discovered in living orga- 
nisms (5). 
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1 X = H, (iC19-iC19) 

2 X = CH3, (iC20-iC20) 

3 X = CH20H 

The solid peaks in Fig. 1 depict the 
head-to-head linked isoprenoids in con- 
siderable concentration (0.1 percent of 
crude) relative to their head-to-tail linked 
counterparts (shaded peaks). 

The head-to-head linkage was discov- 
ered by interpretation of capillary gas 
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sponding temperature fluctuations of the 
shocked material may be large. 

In any case, definitive experiments are 
required to establish whether the detona- 
tion mechanism obtains, as well as to 
measure pertinent parameters. 

G. R. FOWLES 
Physics Department, Washington 
State University, Pullman 99164 
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chromatography-mass spectrometry 
(GC-MS) (Fig. 2B) of the branched acy- 
clic saturated fraction produced by alu- 
mina-silica chromatography (6), with 
subsequent thiourea adduction (2) from a 
California Miocene crude. The diagnos- 
tic series of ion doublets (7) observed at 
mle 112-113, 182-183, 252-253, 308-309, 
378-379, and 448-449 (Fig. 2B) is in- 
dicative of head-to-head linkage, and 
confirmation was obtained by com- 
parison with authentic head-to-head 
iC19-iC,9 (i, isoprenoid) (Fig. 2A). 

Authentic 2,6,10,14,17,21,25,29-octa- 
methyltriacontane (1, iC19-iC,9) was syn- 
thesized in three steps starting from 
methylpristanate (Analabs). Lithium 

I , t , I I I ~~Li Al H4 
C02CH3 

PBr5 

OH Br 

Li (Hg) 

1 

aluminum hydride reduction of the ester 
to pristanol was followed by conversion 
to 1-bromopristane by means of phos- 
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Head-to-Head Linked Isoprenoid Hydrocarbons in Petroleum 

Abstract. A series of petroleum isoprenoid hydrocarbons possessing an unusual 
head-to-head linkage is present as an important component in petroleum. The entire 
series appears to be produced by diagenesis or catagenesis from precursors contain- 
ing 40 carbon atoms. A suitable precursor compound has been reported in one type 
of living organism, thermoacidophile bacteria. 
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Fig. 1. Mass fragmentogram of isoprenoids of a California Miocene crude, 1535 m in depth. 
Capillary GC-MS with a 60-m, 0.05-cm (inside diameter) nickel wall-coated Dexsil 400 column 
(Hewlett-Packard 7620A GC; Nuclide 12-90G MS) at 70 eV. 
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phorus pentabromide in chloroform over 
sodium carbonate. The 1-bromopristane 
was coupled in a Wurtz-type reaction by 
means of lithium amalgam in refluxing 
dioxane (8) to give a 1 percent yield (by 
GC) of 1 in solution with unreacted bro- 
mide. The synthetic iC19-iC19 (1) coelut- 
ed with the natural iC,9-iC9. peak from 
petroleum on capillary GC on two dif- 
ferent nickel columns, namely, 60-m 
Dexsil 400 or OV-101 wall-coated, 0.05 
cm in inside diameter. 

The components detected in petro- 
leum include various combinations of 
regular iC13 through iC20 isoprenoids 
linked head to head with regular iC,9 or 
iC20 isoprenoids (Fig. 1), the largest 
homolog being iC20-iC20 (2). A head-to- 
head homolog containing a regular iC17 
isoprenoid portion is conspicuously ab- 
sent, as is often the case with the regular 
iCW7 isoprenoid. These phenomena are 
reminiscent of the normal diagenesis pat- 
tern of phytane (and its precursors) 
found in crude oil (3); that is, all of the 
lower head-to-head homologs can be 
considered as diagenetic debris from one 
or more precursors which contain the 
iC20-iC20 arrangement of carbon atoms. 

This same series of head-to-head 
linked isoprenoids was detected in crude 
oils and source rock extracts from di- 
verse locations in Canada, Venezuela, 
the United States, and the U.S.S.R. 

The head-to-head structural feature 
has only one known biological natural 
product analog, coo'-biphytanediol (3), 
found in cell-wall membranes of ther- 
moacidophile bacteria of the Calderiella 
series (5). Thus, it seems likely that mi- 
crobial species present during the early 
stages of catagenesis would contain simi- 
lar suitable head-to-head linked isopre- 
noid precursors. Further support for a 
genetic connection comes from Albrecht 
(9), who has identified several C40 head- 
to-head linked isoprenoids, including 
2, by chemical degradation of kerogen. 
Previously, bacteriohopane tetrol (C3,), 
which has been found in Acetobacter 
xylinum (10), has been linked to C31 to 
C35 petroleum hopanes having extended 
side chains (11), another possible genetic 
relation between microorganisms and 
petroleum. The discovery of head-to- 
head linked isoprenoids in petroleum 
provides compelling evidence for a 
ubiquitous and substantial contribu- 
tion of bacterial cell-wall lipids to crude 
oils. 

J. MICHAEL MOLDOWAN 
WOLFGANG K. SEIFERT 

Chevron Oil Field Research Company, 
Post Office Box 1627, 
Richmond, California 94802 
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Recently presented geologic evidence 
(1, 2) strongly supports the astronomical 
theory of climate change, which states 
that variations in the seasonal and latitu- 
dinal distributions of incoming solar radi- 
ation due to long-term variations in the 
earth's orbital parameters had a signifi- 
cant effect on global climate during the 
last 2 million years. However, the degree 
to which the climatic record of glacial 
and interglacial fluctuations is actually a 
direct result of orbital controls has not 
yet been determined (3). In addition, the 
orbital parameters that are expected to 
have a significant effect on climate are 
not always those that are actually reflect- 
ed in the climatic record (1). This report 
addresses these two problems. 

The distribution of the sun's energy 
with respect to latitude is controlled pri- 
marily by the tilt of the earth's axis. The 
distribution of insolation with respect to 
the seasons is controlled by the pre- 
cession of the equinox about the sun. 
Both of these orbital parameters undergo 
long-term periodic variations caused by 
the gravitational attraction of other plan- 
ets in the solar system. Detailed descrip- 
tions of these orbital parameters can be 
found in Chin and Yevjevich (4), Broeck- 
er and Van Donk (5), and Berger (6). 
Based on our precise knowledge of the 
solar system, the orbital variations have 
been determined for the past 5 million 
years, showing that tilt varies with an av- 
erage period of 41,000 years and pre- 
cession with an average period of 21,000 
years (6). The application of spectral an- 
alytical techniques to paleoclimatic rec- 
ords obtained from deep-sea cores has 
identified these periodicities in the rec- 
ord of the earth's climate (1, 2). 

In many cases most of the variance of 
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ions [F. W. McLafferty, Interpretation role in climatic change (1). If we are to 
Spectra (Benjamin, Reading, Mass., ed. understand the exact nature of long-term 
, presumably secondary carbocations in 
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approached by a number of authors. 
Hays et al. (1) assumed that all the vari- 
ance in the peaks in the power spectrum 

'hastic? of their climatic record, which corre- 
spond to the periodicities of precession, 

ie earth's ice volume record of obliquity, and eccentricity, could be at- 
ig by variations in the earth's tributed to forcing. As a result, they con- 
nall (less than 25 percent of the cluded that about 80 percent of the vari- 
centricity is observed. This in- ance in their 450,000-year climatic rec- 
'gely stochastic in nature. ord was due to orbital forcing. Chin and 

Yevjevich (4) presented a mathematical 
tatic records is centered at fre- model for long-term changes in the 
equal to periods of about world's ice volume and described cli- 

ears. This corresponds to the mate change as "an almost periodic sto- 
/ of variations in the eccentric- chastic process." They concluded that 
earth's orbit. According to the 59 percent of the variation in global ice 
cal theory of climate change, volume is stochastic. 

eccentricity influences the If variations in tilt and precession are 
solation only by modifying the the primary causes of climatic variation, 
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Fig. 1. Coherence spectra, plotted on an arc 
tangent scale (9), of the 8180 record [TWEAQ 
time scale (2)] with (a) the eccentricity of the 
earth's orbit, (b) the tilt of the earth's axis, 
and (c) the precession of the equinox (6). The 
coherence spectrum of the tilt of the earth's 
axis with the precession of the equinox is 
shown in (d). All measures of coherence lying 
below the dashed line are not significantly dif- 
ferent from zero at the 80 percent confidence 
level (16 lags or 20 degrees of freedom). Ab- 
breviation: B. W., bandwidth. 
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amount of variance in y(t) explained by 
the model. 
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