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Simultaneous Production of Q and R Bands After Staining with 

Chromomycin A3 or Olivomycin 

Abstract. Human and mouse chromosomes, stained with either chromomycin A3 
or olivomycin, which bind preferentially to G ? C-rich DNA (where G is guanosine and 
C is cytosine), exhibit a Q or a reverse banding pattern, depending on the wavelength 
used for excitation. The two complementary banding patterns can be observed in the 
same metaphase simply by changing the combination of excitation filters. These data 
suggest, therefore, that in addition to base composition, other factors are involved in 
the production of chromosome banding by chromomycin A3 and olivomycin. 
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range). All observations were made with 
a Neofluar 100x Zeiss objective. 

The observation of human metaphase 
chromosomes with combination (i) re- 
vealed that both chromomycin and oli- 
vomycin produce a specific green fluo- 
rescent banding pattern (Fig. la) that is 
very similar to the Q banding observed 
after staining with Hoechst 33258 (7). 
This was shown by the behavior of the 
secondary constrictions of chromosomes 
1 and 16, which exhibited a bright fluo- 
rescence like that appearing after 
Hoechst staining. However, with combi- 
nation (ii), we observed the yellow fluo- 
rescent R-banding pattern already de- 
scribed by van de Sande et al. (4). (Fig. 
lb). The most surprising feature of this 
phenomenon was that the Q banding and 
the R banding could be observed and 
studied in the same metaphase simply by 
changing the combination of filters. Simi- 
lar observations were made on mouse 
chromosomes stained with chromomy- 
cin A3 or olivomycin (Fig. 2). With com- 
bination (i) the centromeric regions ex- 
hibited a bright fluorescence similar to 
that after Hoechst 33258 staining (8). 
With combination (ii), however, these 
regions were much less fluorescent than 
euchromatic arms. 

We wish to point out that our staining 
technique, contrary to that described by 
van de Sande et al. (4), does not 
require a high concentration of the two 
antibiotics. The best results are ob- 
tained when the slides, stained with 
chromomycin A3 or olivomycin (5 /xg/ 
ml), are kept for 24 hours in the dark at 
room temperature before observation. 
With this process of "maturation" a 
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more intense fluorescence of both Q and 
R banding is produced and there is only a 
negligible fading. 

The two complementary banding pat- 
terns are observed even if no MgC12 is 
added to the staining solution. In this 
case, however, fluorescent bands fade 
rapidly and it is difficult to take photo- 
graphs. 

Our results clearly show that both 
chromomycin A3 and olivomycin can 
produce either a Q- or an R-banding pat- 
tern depending on the wavelength of ex- 
citation. Whereas the Q banding exhibits 
a green fluorescence, the R banding 
shows a yellow fluorescence. The sim- 
plest interpretation of these results is 
that the two antibiotics bind both the Q 
and the R regions, but with different 
chemical bonds. Chromomycin A3 and 
olivomycin, bound to the Q regions, 
would be specifically excited with com- 
bination (i) producing a Q-banding pat- 
tern, whereas, bound to the R regions, 

they would be specifically excited with 
combination (ii) and would exhibit a re- 
verse banding. 

Although studies on DNA in solution 
indicate that chromomycin A3 and oli- 
vomycin are specific G ? C ligands (2-4), 
the present data show that, if they are 
excited with combination (i), these anti- 
biotics specifically stain the A . T-rich 
centromeric regions of human chromo- 
somes 1 and 16 [see (9)] as well as all the 
A . T-rich mouse centromeric regions 
(10). The benzimidazole derivative 
Hoechst 33258, which specifically binds 
A - T-rich DNA (11), produces a similar 
banding pattern with the same filter com- 
bination [combination (i)], but does not 
produce an R-banding pattern when ex- 
cited with combination (ii) (12). Thus 
these three compounds produce a similar 
banding pattern on fixed chromosomes 
independently from their different affini- 
ty for A * T-rich or G ? C-rich DNA in so- 
lution. These considerations suggest that 

Fig. 1. Male human metaphase stained with chromomycin A3 and observed (a) with combina- 
tion (i) and (b) with combination (ii). The arrows indicate the secondary constrictions of 
chromosomes 1 and 16. 

Fig. 2. Fibroblast mouse metaphase (strain DBA2) stained with chromomycin A3 and observed (a) 
with combination (i) and (b) with combination (ii). 
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the peculiar banding pattern produced by 
chromomycin A3 and olivomycin is not 
simply related to variations in base com- 
position along the chromosome. 

In addition to the base composition, an 
important role in determining the band- 
ing specificity of these two antibiotics 
may be played by variations in base se- 
quence (13) or in protein-DNA inter- 
action along the chromosome (14). In 
this context it should be recalled (14, 15) 
that data from studies in vitro of DNA 
fluorochrome interaction do not permit a 
reliable prediction of the response of 
chromosomes to fluorochrome staining. 
Nevertheless, we think that further stud- 
ies on the molecular interaction of chro- 
momycin A3 and olivomycin with the 
various chromosomal components may 
provide important insights into the 
chemical basis of chromosome banding. 

Our results show that staining with 
chromomycin A3 and olivomycin pro- 
vides a banding technique with an ex- 
tremely high power of resolution. The 
possibility of scoring two com- 
plementary banding patterns in the same 
metaphase makes this technique particu- 
larly useful in diagnostic studies with hu- 
man chromosomes. 
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