
well as with studies of returned samples 
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and crater ejecta deposits are major 
sources of the orbital anomalies. The 
level of magnetization is weak peripheral 
to the impact region inside the crater, but 
it rises beyond the rim and may rise 
sharply in the case of some ejected mate- 
rials transported ballistically to large dis- 
tances. As the latter are probably also 
the materials most strongly shocked and 
heated by the impact event, a relative in- 
crease in the volume fraction of free iron 
grains capable of retaining a strong and 
stable magnetic remanence is to be ex- 
pected (1). 
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Fluidization: Hydrodynamic Stabilization with a Magnetic Field 

Abstract. Fluidization of magnetizable particles by a gas stream in the presence of 
a uniform applied magnetic field oriented parallel to the flow prevents the hydro- 
dynamic instability that otherwise leads to bubbles and turbulent motion within the 
medium. The fluidized emulsion expands uniformly in response to gas flow speeds in 
excess of that at the incipient fluidization point, with transition from the quiescent 
stable state to bubbling occurring suddenly at a characteristic increased rate of flow. 
Experimental data demonstrate the dependence of this transition velocity on the in- 
tensity of the applied magnetic field, length of the bed, and type of magnetic solids. 
Data illustrate the pressure distribution through the bed medium, the bed flow char- 
acteristics, and other related phenomena. 
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stabilized beds do not have the relatively 
high heat transfer rates of bubbling fluid- 
ized beds, but the backmixing of solids 
and gas bypassing that are characteristic 
of conventional beds are eliminated (5). 
The magnetic field may be conveniently 
furnished by wound coils carrying a 
modest electric current and surrounding 
the fluidization vessel (6). Experiments 
showing certain general characteristics 
of the magnetically stabilized solids are 
described below. 

Figure 2A illustrates the response of 
magnetized solids to an increase of the 
superficial velocity of the gas for a con- 
stant applied magnetic field. The parti- 
cles are a closely graded range of ferro- 
magnetically soft nickel-copper alloy 
particles (Monel) (7). With no gas flow, 
the bed length is that of the randomly 
dumped solids. With a flow of air admit- 
ted to the vessel, the bed length is un- 
changed up to the point of incipient fluid- 
ization. Thereafter, the bed accommo- 
dates increasing flow by a process of 
homogeneous expansion in which bub- 
bles are absent from the bed and the bed 
emulsion is free of agitation or solids cir- 
culation. In this state a visual inspection 
of the static bed fails to reveal its fluid- 

like nature. However, objects are readily 
immersed in the bed as in a liquid, and 
when released, light objects float and 
dense objects sink. When a hollow plas- 
tic sphere (Ping-Pong ball) 3.72 cm in di- 
ameter and weighing 1.94 g is initially ro- 
tated in the bed, it continues to spin for 
several seconds, indicating the very low 
frictional support it experiences when 
floating partly submerged in the bed 
emulsion. As the gas flow rate is in- 
creased further, a point is ultimately 
reached where bubbling and fluctuation 
in pressure drop suddenly begin (8). As 
detailed in Fig. 2A, this point of transi- 
tion from the calmed or stabilized state 
of flow to the state of bubbling and turbu- 
lence occurs at a flow rate substantially 
higher than that at incipient fluidization. 
Additional study showed that the transi- 
tion velocity of a stabilized bed was 
unaffected by the cross section dimen- 
sions of the containing vessel in tests 
where the hydraulic diameter varied from 
3 to 28 cm. 

Transition velocity increases as bed 
length decreases, and for long beds it ap- 
pears that transition speed asymptoti- 
cally approaches a constant value. The 
behavior of Monel particulates of three 

size ranges is shown in Fig. 2B; transi- 
tion speed is highest for the largest parti- 
cles, all other variables held constant. 
The increased stability of shorter beds 
may be explained by considering the 
evolution of a small hydrodynamic dis- 
turbance introduced at the grid. The dis- 
turbance grows as it moves through the 
bed, but may be sped out of the bed be- 
fore it grows sufficiently to produce a 
bubble. 

Other magnetizable solids behave sim- 
ilarly. Experimental results with steel 
spheres (Fig. 2, C and D) illustrate fur- 
ther aspects of the behavior. Figure 2C 
shows that measurement of the pressure 
difference through the bed as a function 
of flow rate gives a curve that rises lin- 
early from the origin, breaks at the point 
of incipient fluidization, and then levels 
off; the pressure drop is then nearly 
equal to the weight of the bed divided by 
its cross-sectional area. The slope of the 
initial linear portion of the curve is inde- 
pendent of applied field and is predict- 
able from the low-velocity limit of the 
well-known fixed-bed Ergun relationship 
(4, p. 67). When the test is conducted 
with another value of applied magnetic 
field, the initial slope and plateau value 
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Fig. 2. (A) Expansion of magnetically stabilized emulsion in response to increasing airflow at constant applied field intensity. The bed comprised 
2840 g of Monel of particle size 177 to 250 um and specific gravity 8.45 in a vessel 7.57 cm in diameter. Applied field intensity was 5000 Oe, 
uniform over the test region to within 1 percent. (B) Influence of bed length on transition speed for magnetically saturated beds of Monel 
particulates in applied field of 5000 Oe. Plateau values of transition speed define beds that are long. (C) Characteristic breakpoint and plateau. Bed 
particles were 177 to 250-,um C1018 steel spheres. Pressure was sensed by a capillary tube insert vertically into the bed with the tip about 1 mm 
above the bed support grid and the other end connected to a U-tube manometer. Reduction of flow rate after reaching any plateau point in the 
stabilized region is accompanied by decrease of pressure approximately linearly back through the origin, and further cycling produces a hys- 
teresis loop. In these modes of operation the bed is partially levitated. (D) Transition from the unfluidized to stably fluidized and then to unstably 
fluidized (bubbling) state as a function of applied field for steel spheres in (C). In the stably fluidized state the medium exhibits liquid-like behavior 
of buoyancy and flow. At values of H higher than those shown here the stably fluidized medium develops properties of a gel, then at higher field 
becomes solid. (E) Gauge pressure versus depth in bed. Constant slope indicates uniform voidage from layer to layer [, = 1 - (OAp/al)/psg]. The 
solids were nickel supported on alumina. (F) Flowable nature of magnetized, fluidized solids demonstrated in orifice discharge tests. Discharge 
coefficient was calculated as described in (12). Bed solids were nickel on alumina, 250 to 420 A/m. 
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are unchanged. This behavior is the 
same as for unmagnetized, fluidized sol- 
ids. The invariance of incipient fluidiza- 
tion to the presence or absence of the ap- 
plied field is anticipated since a uniform 
field can exert no net force on a whole 
body. 

In Fig. 2C the breakpoint corresponds 
to the minimum fluidization speed UM, 
and transition to the bubbling state of 
flow at speed UT corresponds to the onset 
of fluctuations in pressure and to visible 
bubbling at the bed top surface. At 
speeds in excess of UT the bed contains 
bubbles throughout and bed length fluc- 
tuates widely. 

When pressure-drop flow-rate curves 
are obtained for a number of applied field 
intensities, the values of UM and UT 

plotted against applied field H produce 
the map shown as Fig. 2D. This defines 
three regions that classify the physical 
state of the bed emulsion as unfluidized, 
stably fluidized, or unstably fluidized. 
The boundary between stably and un- 
stably fluidized represents the transition 
described previously, while the bound- 
ary between unfluidized and stably fluid- 
ized represents incipient fluidization. 
The horizontal line through the values of 
uM shows that incipient fluidization is 
unaffected by the applied field intensity. 

Uniformity of the emulsion can be in- 
ferred from pressure measurements 
made with a capillary tube connected to 
a manometer and inserted vertically into 
the bed. Pressure increases linearly with 
depth, implying that voidage is uniform 
from one layer to the next throughout the 
bed (Fig. 2E). 

Orientation of the applied field is an 
important parameter in achieving the 
maximum range of stable flow; the pre- 
ferred direction is colinear or parallel to 
the direction of flow, and hence vertical 
in these experiments. Experiments with 
a uniform transverse orientation of the 
applied field showed that bubbling oc- 
curs at a flow rate that is greater than the 
incipient fluidization velocity, but much 
less than the transition velocity for a co- 
linear field of the same intensity (9). 

Orifice discharge tests confirmed the 
ability to transfer solids out of the con- 
taining vessel. The flow rate of the solids 
is characterized by a constant value of 
the discharge coefficient, independent of 
the applied field intensity or initial depth 
of the bed (Fig. 2F). Water is discharged 
with a larger coefficient, presumably be- 
cause of arching that impedes the flow of 
grains through orifices when the ratio of 
orifice diameter to particle size is too 
small. Additional tests in which bands of 
surface-pigmented solids were used as a 
color tracer showed that solids move 
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Fig. 3. Correlation of transition speed with 
void fraction. Bed particulates are magneti- 
cally saturated, and bed is asymptotically long 
(horizontal portion of curves in Fig. 2A). 

through the bed in ideal piston-like mo- 
tion with no backmixing when a series of 
eight evenly spaced orifices are simulta- 
neously opened around a circumference 
of the vessel's cylindrical wall a short 
distance above the support grid. The 
plug nature of the flow is participated in 
by all the bed particles, including those 
adjacent to the wall. In this respect, the 
bed emulsion behaves as an inviscid me- 
dium displaying slip at the wall. Of 
course, near the orifices the flow must 
deviate from simple one-dimensional 
motion. 

When particle magnetization exceeds 
a threshold value dependent on the par- 
ticulars of the flow test, the flowability of 
the bed solids is impeded and ultimately 
lost because of particle-to-particle forces 
of cohesion. 

In seeking a universal description of 
the magnetic transition phenomenon, an- 
alytical model study as well as dimen- 
sional reasoning led to the conclusion 
that for a long bed of magnetically satu- 
rated solids fluidized by a gas of negli- 
gible density the transition speed U (cen- 
timeters per second), particle density p 
(grams per cubic centimeter), magnet- 
ization M (gauss), and bed voidage e are 
functionally related through (10) 

Nm = f (e) 

Here Nm is a dimensionless magnetic 
modulus representing a ratio of kinetic 
energy to magnetostatic field energy and 
defined by 

Nm - 
pU2 

Limited data for media of 335-/am Mo- 
nel, 335-/um supported nickel, and 53-tum 

supported nickel in which voidage varies 
from 0.35 to 0.77 and Nm varies from 
2.6 x 10-3 to 0.30 are correlated as 
shown in Fig. 3 by 

3 3 
Nm --E6 

Magnetically stabilized fluidized me- 
dia provide a unique new means for the 
contacting of fluids with solids, offering 
an alternative to conventional fluidized 
beds, fixed beds, moving beds, and other 
types of contactors (11). Since gas by- 
passing and solids backmixing are pre- 
vented and solids flow is accommodated, 
stabilization offers the capability for true 
countercurrent contacting in continuous 
flow systems. Fine particle sizes can be 
used that are especially suited for cata- 
lytic conversions, sorption separations, 
and other operations without penalties of 
a high pressure drop. The gentle nature 
of the solids flow permits the use of 
friable materials and minimizes losses of 
these solids. Potential applications are in 
petroleum refining, coal gasification, ore 
roasting, flue gas treatment, and other 
areas. 

It was also found that the bed func- 
tions as an effective filter to remove con- 
taminant particulates from a gas stream. 
The efficiency for collection of fly ash in 
a 10-cm-long stabilized filter bed of 250- 
to 420-/atm magnetite particles as mea- 
sured by an Anderson impactor in pre- 
liminary tests was 99.9 percent or greater 
for particulates of 4 /tm and larger, and 
95 percent for particulates of 2.1 /im. 
The applied field was 150 Oe with a su- 
perficial velocity of 60 cm/sec. The 
process is promising for particulate col- 
lection at elevated temperatures and 
pressures beyond the state of the art for 
electrostatic precipitators and other col- 
lecting devices; operation is conceivable 
up to the vicinity of the Curie temper- 
ature (1121?C for elemental cobalt). 
Since the bed is fluidized, the bed con- 
tents may be removed for cleaning on a 
continuous basis and the pressure drop 
remains nearly constant in operation, 
even when several weight percent of 
fines has been collected. 

RONALD E. ROSENSWEIG 
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Interplanetary Magnetic Field Polarity and the Size of 

Low-Pressure Troughs Near 180?W Longitude 

Abstract. When the interplanetary magnetic field is directed away from the sun, 
the area of wintertime low-pressure (300-millibar) troughs near 180?W longitude is 

significantly larger than when the field is toward the sun. This relation persists during 
most of the winters of 1951 to 1973. 
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Low-pressure (300-mbar) troughs (cy- 
clones) that are near 180?W longitude 
when the interplanetary magnetic field is 
directed away from the sun are, on the 
average, significantly larger than when 
the field is toward the sun. The dif- 
ference in area persists during a 5-day in- 
terval in which the troughs move from 
180?W to the North American continent. 
This relation persists during most of the 
winters from 1951 to 1973. (The winter of 
1951 is defined as October 1950 through 
March 1951.) 

Roberts and Olson (1) reported that 
troughs that cross 180?W 2 to 4 days after 
an increase in geomagnetic activity tend 
to become significantly larger than aver- 
age. The size of the troughs was mea- 
sured by using the vorticity area index 
(VAI), which is defined as the area of the 
trough where the absolute vorticity (cir- 
culation per unit area) at 300 mbar ex- 
ceeds a value of 20 x 10-~ sec-1 plus the 
area where the vorticity exceeds 24 x 
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105 sec-1. These vorticity values corre- 
spond to a well-formed trough. The VAI 
was recorded for a trough on the first 
day after it had crossed 180?W during 
the course of its eastward motion (occa- 
sionally a trough was formed east of 
180?W and was similarly counted). After 
a trough had been identified east of 
180?W, its VAI was measured twice a 
day for the next 12 days (during some 
winters the area was recorded for only 
the first 3 days and during some early 
years data were available only once a 
day). In the study reported here we used 
the same measurements of trough area 
that were used by Roberts and Olson (1); 
however, in the present study there is no 
reference to the times of sector boundary 
passages (and therefore to times of vary- 
ing geomagnetic activity), so the results 
reported here are not directly com- 
parable to those of Roberts and Olson. In 
some of our earlier work (2) the VAI 
summed over all troughs in the entire 
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Fig. 1. (A) Average area of low-pressure troughs (cyclones) during the 10 days after the troughs 
crossed 180?W: (0) away troughs and (*) toward troughs (see text for explanation). During the 
first 5 days after the troughs crossed 180?W, the area of the away troughs is significantly larger 
than the area of the toward troughs. Error bars are plus or minus the standard error of the mean. 
(B) Indication of winters during which trough area data were available for 10 days after the 
troughs crossed 180?W and of winters during which the data were available for only 3 days. (C) 
Same as first 3 days in (A) but computed for years in which trough area data were available for 
only 3 days. The area of the away troughs is again larger than the area of the toward troughs. 
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