
The Mutual Embrace of 

Electricity and Magnetism 

In the development of his electromagnetic field theory 
Maxwell relied heavily on this suggestive image. 

M. Norton Wise 

Scientific imagination has often been 
guided by visual images. Notable in the 
physical sciences among those who 
claimed to think in pictures, images, or 
embodied mathematics are Bohr, Ein- 
stein, and Maxwell. As historically im- 
portant as visual images have been, how- 
ever, the process of concept formation 
through imagery has not often been easy 
to unravel. Therein lies the intended sig- 
nificance of the present article for, once 
uncovered, the creative role of Max- 
well's imagery is relatively transparent. 
Moreover, it explains much that has 
been obscure in the emergence of his 
electromagnetic theory-for example, 
how his ideas were related to Faraday's 
and how the well-known reciprocal sym- 
metry of electric and magnetic fields first 
appeared. Before considering elec- 
tromagnetism, however, a few remarks 
on the general function of images may 
serve at the outset to focus attention on 
those aspects which seem most clearly 
exemplified in Maxwell's work. 

Without attempting to distinguish 
sharply between visual images, physical 
analogies, and models, I will use the 
phrase visual image to refer to those pic- 
torial representations of natural phenom- 
ena which function primarily as symbols 
and which often have metaphorical con- 
notations. Kepler's representation of the 
cosmos by a sun-centered sphere, in me- 
taphorical analogy to the Christian trini- 
ty as a sphere with God the Father at the 
center, was such a symbol. So was 
Bohr's "formal representation" of elec- 
tron stationary states by definite orbits, 
particularly when coupled with his meta- 
phor of "free will" of the electron in 
transitions between states. Visual im- 
ages as symbols, or hieroglyphs, depict 

more or less abstractly those character- 
istics of a phenomenon seen to be core 
characteristics, while merely evoking or 
standing for much that is not depicted, 
sometimes a physical model or analogy, 
sometimes a mathematical structure. 
The metaphorical connotations of visual 
images, on the other hand, often reveal 
strong commitments-psychological, re- 
ligious, and philosophical-which help 
to explain their power in concept forma- 
tion and their continual reappearance in 
the work of a single individual. 

Partly because of these symbolic and 
metaphorical aspects, powerful images 
suggest relations and concepts that ex- 
tend far beyond the empirical subject 
matter they are taken to represent. Much 
as models and analogies, but with less 
concreteness, images serve as heuristic 
devices, as guides to what one hopes to 
discover, as well as symbols for what 
one supposedly knows. All such heuris- 
tic devices share the property of gener- 
ating problems whose answers force re- 
formulation of the representations from 
which they arose. But images conceived 
specifically as symbols have a special 
characteristic, not appropriate to models 
and analogies. A symbol for physical 
reality may remain the same while the 
content symbolized changes radically. In 
this sense, the function of visual images 
is like that of words and of mathematical 
symbols, which also shape perceptions 
and are reshaped in meaning by the per- 
ceptions they produce. But visual images 
are easier to grasp as symbols than are 
words and they possess more immediate 
perceptual significance than abstract 
mathematical symbols. For that reason 
an historical examination of the role of 
imagery in the formation of a powerful 
concept may display quite sharply the 
process of shaping and reshaping of con- 
tent. 
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With the latter goal in mind I present 
here an analysis of a striking example, an 
image of mutually embracing curves that 
was present throughout the formative 
stages of Maxwell's electromagnetic the- 
ory, roughly 1855 to 1870. Through the 
metaphor of mutual embrace, symbol- 
ized as two interlocked rings, Maxwell 
first conceived the reciprocal dynamics 
of electric currents and magnetic forces. 
His original conception was physically 
and mathematically incomplete, yet it 
acted as both motivation and guide for 
completion. The immediate result was a 
symmetrical set of relations between 
steady-state currents and magnetic 
forces. This initial success, however, 
more nearly opened the problem than 
solved it and led to a thoroughgoing re- 
formulation that we now recognize as 
Maxwell's equations. In order to see this 
process clearly, it will be helpful first to 
survey the 19th-century prelude to Max- 
well's transformation of electricity and 
magnetism. 

Replacing Laplacian Imagery 

Following the examples of Newton's 
universal gravitation between atoms of 
matter and his corpuscular theory of 
light, a coherent and fruitful program for 
all of physics emerged in France in the 
early 19th century. This program- 
which has been called Laplacian, after 
its most illustrious exponent-attempted 
to describe each of the areas of physical 
phenomena, such as gravity, electricity, 
magnetism, and heat, in terms of a sepa- 
rate "matter" whose action was the sum 
of the independent actions of its sup- 
posed constituent particles. Two such 
actions were possible: either the parti- 
cles exerted forces, such as the gravita- 
tional force, on points at a distance, or 
the particles themselves were trans- 
mitted to points at a distance, as the cor- 
puscles of light. Thus there were electric 
and magnetic "fluids" between whose 
respective particles inverse square 
forces acted; heat was also identified 
with a fluid, the self-repulsive caloric 
fluid, but conduction of heat through 
normal matter took place as radiation of 
particles of caloric between molecules of 
matter. In each area, then, the con- 
trolling image was one of direct action at 
a distance between independent parti- 
cles, whether through forces or second- 
ary particle transmission. This single im- 
age for many phenomena represented a 
coherent explanatory program for phys- 
ics. It did not, however, unify the vari- 
ous branches on a shared physical basis, 
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a demand that would soon be widely felt 
and that Maxwell's theory would partial- 
ly satisfy. 

The Laplacian type of mechanical re- 
duction was not conceived by its sup- 
porters as merely a heuristic device to 
guide research; Poisson, Biot, Laplace, 
and others insisted that it was the only 
acceptable mode of explanation (1, 2). 
As a mathematically sophisticated and 
very successful program, therefore, it 
demanded an equally powerful opposi- 
tion before its associated imagery could 
be replaced. The most serious challenges 
came after 1815 in the form of highly ar- 
ticulated mathematical alternatives, pre- 
sented by Fresnel in his wave theory of 
light and by Fourier in his macroscopic 
description of heat conduction as a flow 
process. Beneath the mathematics of 
their descriptions lay new and very 
simple imagery. Both Fresnel and Fou- 
rier substituted indirect transmission of 
effects by propagation through a largely 
unspecified medium for direct transmis- 
sion of particles or forces to a distance. 
Fourier in particular highlighted the posi- 
tive, descriptive character of his heat 
conduction analysis, which would ele- 
vate it beyond any hypothesis con- 
cerning the true nature of heat. He pro- 
vided neither a new model nor (directly) 
a new analogy, but rather a new tech- 
nique of analysis and a new image. In a 
picture consisting only of flow across 
constant-temperature surfaces, he 
stressed the simple linear relation be- 
tween the amount of heat crossing any 
unit surface per unit time (flux) and the 
rate of change of temperature across the 
surface (temperature gradient). In vector 
notation, this is Q = kI, where Q is flux 
of heat ("quantity," in the language of 
Faraday and Maxwell), I is temperature 
gradient ("intensity"), and k is relative 
conductivity of the medium. 

Fourier's description effectively made 
temperature gradient the cause of heat 
flow through a medium. That would later 
be seen to have raised the concept of the 
gradient to independent and fundamental 
status, analogous to the steepness of a 
hill, whereas in the Laplacian picture the 
gradient had been only a secondary, 
purely mathematical, expression. Simi- 
larly, the wave theory of light substituted 
two concepts, displacement and tension 
in a medium, for the former flux of cor- 
puscles. Both new propagation schemes, 
in retrospect, characterized propagation 
by two parameters, one a quantity and 
the other an intensity. 

Fourier's treatment of heat trans- 
formed the Laplacian picture of direct 
transmission to a distance into an in- 
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Fig. 1. Oersted's picture of the mai 
in the vicinity of a current-carryin, 
a complete representation Oerste 
magnetic circles drawn at all rad 
wire. 

direct propagation view. Thi, 
ized statement, however, conta 
plication that Fourier never 
Because the older picture appli' 
ly to the transfer of material c( 
such as caloric, but also to nc 
electric or magnetic action at a 
the transformed picture could r 
be applied to the transmission 
as well as to heat conduction. 
tential was recognized to va 
grees by several mathematicall 
physical scientists, notably 
Gauss, Whewell, and especiall 
Thomson (later Lord Kelvin). 
began to develop the analogy 
and extensively in the 1840's 
marily as a mathematical an. 
stopped short of a physical 
which would have involved a 
intensity distinction. When 
learned the mathematics from 
in the early 1850's, however, I 
it as what may be called physic 
try. He gave the mathematical 
a certain reality. The full floi 

therefore, with a quantity-inte 
tinction displayed, would com( 
major role in his new synthes 
tricity and magnetism. The q 
tensity distinction will be seer 
be one of the basic sources fo 
field description of electric anm 
forces, with two fields for eacl 
D and H, B in modem notatio 

Interconvertibility and Faraday 

Imagery 

Although Fourier and Fre, 
the coherence of Laplacian ph: 
did not mount the fatal challk 
challenge derived from sever 
eries of the interconversion of 
forces in nature: chemical to 
the voltaic cell (Volta, 1800); 
magnetic in electromagnetism 
1820); and magnetic to electric 

magnetic induction (Faraday, 1831). 
Such interconversions could not occur 
between independently conserved fluids. 
At the very least all aspects of electricity 

Current and magnetism had to be reduced to a 
common basis. Today we recognize the 
demand for unity through conservation 
of energy, which was just emerging as a 
principle in the 1840's (3). During that 
emergence unity was sought in at least 

gnetic force three different directions. One could at- 
g wire. For tempt to salvage the action at a distance 
d imagined view by reducing many phenomena to 
ii from the complex forces between only electric 

particles. Among continental analysts 
this approach was widely adopted, and 

s general- with remarkable success. Wilhelm We- 
lins an im- ber's velocity- and acceleration-depen- 
intended. dent law of force was the classic attain- 

ed not on- ment of the 1840's. A second alternative, 
orpuscles, which attempted more but initially 
nmaterial achieved less, was to reduce electricity 

l distance, and magnetism, along with heat and 
)otentially light, to mechanical processes in the lu- 
of forces miniferous ether that underlay the wave 
That po- theory of light. The all-subsuming ether 

trying de- was originally most popular among Brit- 
y oriented ish natural philosophers, such as Whe- 
1 Green, well, Herschel, and Challis. It led direct- 
ly William ly to the mathematical work of Thomson 
Thomson and Maxwell, although with a strong in- 
explicitly fluence from a third alternative. 

,, but pri- The third alternative was pursued by 
alogy. He Michael Faraday. Instead of subtle fluids 

analogy, and ethers, Faraday spoke of natural 
quantity- powers and forces and attempted to in- 
Maxwell vestigate them experimentally. Focusing 

Thomson on the relations evident between powers 
he learned in interconversion, he hoped to uncover 
:al geome- the unity of all natural powers. But de- 
form itself scribing relations between powers, while 
w picture, avoiding concrete models, is not a 
ensity dis- straightforward task, and therein lies the 
e to play a importance of imagery to Faraday's dis- 
;is of elec- cussion. All of Faraday's descriptions 
uantity-in- and analyses of electric and magnetic 
n below to phenomena were couched in graphic im- 
or his dual- ages of lines of force, which represented, 
d magnetic ostensibly without prejudice, whatever 
h force (E, action might actually have been occur- 
n). ring. If we look at these pictures closely, 

they will take us a long way toward un- 
derstanding the theoretical structure that 

'9s Maxwell extracted from them. 
The 19th-century image of elec- 

tromagnetism derived from Oersted's 
snel upset discovery that the magnetic power of an 
ysics, they electric current is directed in circles 
enge. That around, and is perpendicular to, a wire 
ral discov- carrying the current, as shown in Fig. 1. 
powers or These two "axes of power," the current 
electric in line and the magnetic line, became Fara- 
electric to day's fundamental lines of force, al- 
i (Oersted, though each line had other important 
in electro- representations. More complex pictures, 

1311 



even models, emerged from Ampere's 
suggestion that all magnetism derives 
from currents. The lodestone, for ex- 
ample, would consist of molecules of 
iron surrounded by tiny currents. Any 
small magnet, similarly, could be re- 
placed by a current loop, and the well- 
known attractive and repulsive effects of 
magnets would apply equally to cur- 
rents. Figure 2 shows typical resulting 
configurations. Working in the Laplacian 
tradition, Ampere reduced these inter- 
actions to an action at a distance law of 
force between infinitesimal sections, or 
elements, of current. In simplified form, 
adjacent parallel elements of current al- 
ways attract, while adjacent antiparallel 
elements repel. 

Faraday accepted neither the reality of 
action at a distance nor the propriety of 
arbitrarily defined current elements, but 
he did agree that two adjacent lines of 
electric force, representing parallel cur- 
rents and taken as a whole, would attract 
laterally. Any single closed line, further- 
more, would tend to elongate, as though 
antiparallel elements on opposite sides of 
the loop repelled each other. These later- 
al and longitudinal relations of lines of 
force, represented in Fig. 3, Faraday 
took to be the proper descriptive basis 
for understanding the nature of the elec- 
tric power as it appeared in currents: 
electric current lines attract laterally and 
extend longitudinally. 

Considering the closely associated 
magnetic lines of force, Faraday thought 
of them as a series of little magnets 
placed end to end, with the net effect that 
magnetic lines contract longitudinally 
and repel laterally, as represented for the 
lines of a bar magnet in Fig. 4a. Thus 
magnetic lines and electric current lines 
each have their own lateral and longitu- 
dinal relations, but if the bar magnet is 
replaced by a bundle of current loops, as 
shown in Fig. 4b, those two sets of rela- 
tions are seen to be reciprocal. Lateral 
attraction between current lines has the 
same effect as longitudinal contraction in 
magnetic lines, and longitudinal exten- 
sion in current lines has the same effect 
as lateral repulsion between magnetic 
lines. With a simplicity that would soon 
rivet Maxwell's attention, Faraday sym- 
bolized this mutual relation of the two 
axes of power as two linked rings, per- 
pendicular to each other, but unified in 
their reciprocity. That image is repro- 
duced in Fig. 5. 

The perpendicular rings of electricity 
and magnetism, Faraday observed, ex- 
hibit a certain unity, a "oneness of con- 
dition of that which is apparently two 
powers or forms of power, electric and 
magnetic" (4). This statement is from a 
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Fig. 2. The forces between current loops con- 
ceived as magnets led Ampere to reduce their 
actions to forces between elements of current 
(short sections along the currents). In sim- 
plified form, adjacent parallel elements attract 
and adjacent antiparallel elements repel. 

paper written in 1851, after Faraday had 
struggled for at least 20 years with the 
nature of lines of force. He had by then 

developed a large body of associated 
concepts, of which the most immediately 
important for Maxwell were the notion 
of conduction of lines of force, and an 
associated distinction, similar to Fou- 
rier's, between quantity and intensity of 
the power represented by the lines. 

Lateral attraction 

Longitudinal extension 

Fig. 3. Faraday replaced Ampere's forces be- 
tween current elements by a dynamics of 
lines of force: adjacent electric current lines 
attract laterally, but any particular line tends 
to extend longitudinally. 

All of these ideas developed originally 
out of Faraday's analysis of electro- 
chemical processes, such as those in 
voltaic cells. He imagined the electric 
tension between the two plates of a vol- 
taic cell to inhere in chains of polarized 
water molecules produced by differential 
affinities of the two plates for the oxygen 
and hydrogen of water. Each such chain 
represented a line of electric force. If the 
plates were connected by a conductor- 
a material that could not support electric 
tension-the entire chain would momen- 
tarily break up, relieving its tension 
through the conductor, only to immedi- 
ately recombine and break up again. 
Continuation of the process would con- 
stitute a current of electricity through the 
circuit. 

In this picture it is apparent that the 
quantity of the current would depend on 
how many lines of tension were under- 
going breakup and recombination; that 
is, on the size of the plates or on the 
number of lines through any lateral sec- 
tion cutting all of them. Similarly, the 
power of the current to overcome any re- 
sistance to conduction in the connecting 
circuit, its intensity, would depend on 
the power of the cell to develop longitu- 
dinal tension in the lines of force, or on 
the relative affinities among its com- 
ponents. Every current, then, had two 
characteristics, quantity and intensity, 
the first a lateral measure of power and 
the second a longitudinal one. In any re- 
sisting circuit, the actual quantity of the 
current would be proportional to its in- 
tensity and to the conducting power of 
the circuit, yielding a description very 
similar to Fourier's earlier conduction 
equation [although to Faraday the mean- 

ing was quite different (2, pp. 142-148)]. 
It is understandable, then, that the math- 
ematically inclined Maxwell would read 
the two versions as one, Q = kI, particu- 
larly when he had learned the conduction 
equations of Ohm and Kirchhoff. 

Faraday applied his schema for con- 
duction of lines of force between con- 
tiguous particles successively to elec- 
trostatics and magnetism, developing by 
1850 a highly articulated version for mag- 
netic lines conducted through magnetic 
materials and through space. To the con- 
tinental notion of force at a point arising 
from the action of point particles at a dis- 
tance, he specifically opposed the notion 
of conduction of powers through an in- 
tervening medium, or through space. 
Ponderomotive forces, he reasoned, 
were exerted on objects only as a result 
of their participation in the conduction 
process, or in the field of force. When 
Maxwell came to Faraday's work in 1854 
the lateral and longitudinal properties of 
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quantities and intensities in conduction 
were an integral corollary to the recipro- 
cal lateral and longitudinal dynamics of 
electric and magnetic lines, although 
Faraday admitted to an only imperfect 
understanding of what the exact relation 
might be. This, I will argue, was the pri- 
mary problem Maxwell sought to resolve 
in his first assault on electromagnetism. 

Maxwell's Original Conception 

Maxwell set out in 1854 to develop fur- 
ther the relation of electric currents to 
magnetic forces in the manner of Fara- 
day's conception of a field of force. He 
reported his earliest ideas to Thomson 
(5): 

I have heard you speak of "magnetic lines of 
force" and Faraday seems to make great use 
of them, but others seem to prefer the notion 
of attractions of elements of currents directly 
[Ampere]. Now I thought that as every cur- 
rent generated magnetic lines and was acted 
on in a manner determined by the lines 
through which it passed that something might 
be done by considering "magnetic polariza- 
tion" as a property of a "magnetic field" or 
space and developing the geometrical ideas 
according to this view. 

Maxwell went on to sketch out a geo- 
metrical description of the magnetic field 
in relation to currents. As would soon be 
typical of him, he attempted to distill the 
entire conception into a simple set of 
basic theorems. The two theorems pre- 
sented below were a direct attempt to ex- 
press Faraday's reciprocal dynamics of 
the linked rings in the language of quan- 
tities and intensities. 

Here and throughout the remainder of 
this article, I have added in brackets 
modernized equations for the benefit of 
mathematical readers. Table 1 shows the 
stages of development of these equations 
and compares them with present-day 
Maxwell's equations. In translating the 
mathematics I have consistently used the 
terms quantity and intensity with the no- 
tations Q and I in order to maintain a fo- 
cus on symmetry (and missing symme- 
try) between electric and magnetic de- 
scriptions. This corresponds to Max- 
well's first image and to the continuing 
geometrical significance of his variously 
denoted field variables, which he ulti- 
mately grouped under fluxes (quantities) 
and forces (intensities) (6, 7). Although 
the evolution of Maxwell's equations can 
be conveniently expressed mathemati- 
cally, nothing in the present discussion 
depends on the bracketed equations, and 
they should not be allowed to obscure 
the primary power of Maxwell's image- 
ry. In his initial letter to Thomson, Max- 
well himself provided no equations for 
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his theorems, which is an essential part 
of the story. That it is essential provides 
a general clue, I believe, to the way in 
which Maxwell developed his later argu- 
ments. With this in mind, we may return 
to the original dynamics of electric and 
magnetic lines. 

A natural measure of lateral attraction 
of contiguous lines of magnetic force was 
the quantity or number of the lines cross- 
ing a unit area, Qm, and a natural mea- 
sure of the total tendency of a line to 
contract longitudinally was the sum of 
intensity Im along the line. Through a 
translation of this kind, I suggest, Fara- 
day's identity between the longitudinal 
contraction of a magnetic line and the 
lateral attraction Qe of any current lines 
linked through it became Maxwell's first 
theorem, which I express in the slightly 
simplified and retrospective form: 

1) The magnetic intensity summed 
around a closed loop is measured by the 
total quantity of current through the loop 
(8). 

Im d x jQe - dao 

where dX is a line element and do- is a 
surface element. 

That much might be seen as merely a 
result of Ampere's work on the relation 
of magnetic forces to currents. Now 

Fig. 4 (left). (a) Dynamics of Faraday's mag- 
netic lines of force. Each line tends to con- 
tract along its length, but adjacent lines repel 
laterally. The result is a dynamic balance. (b) 
Bundle of current loops and associated lines 
of magnetic force. When the two sets of lines 
are taken as a system it is apparent that elec- 
tric and magnetic effects are reciprocal. Lon- 
gitudinal contraction in the magnetic lines has 
the same effect as lateral attraction between 
current lines, and lateral repulsion between 
magnetic lines has the same effect as longitu- 
dinal extension of current lines. Fig. 5 
(right). Faraday's symbol of oneness between 
electric and magnetic axes of power. This 
would soon become the central image of Max- 
well's first paper on electromagnetism, where 
he would label it mutually embracing curves. 

called Ampere's law, the relation had 
been utilized and extended by both 
Gauss and Thomson well before Max- 
well. However, they employed only the 
single theorem, for force to them had on- 
ly a single aspect. Maxwell's use of a 
second theorem has no precedent in any 
work but Faraday's. If I am correct, the 
second theorem was a loose attempt, fol- 
lowing the associations of theorem 1, to 
express an identity between lateral 
attraction of magnetic lines passing 
through any area and longitudinal exten- 
sion of any current line surrounding the 
area, thereby completing the symmetry 
of Faraday's linked rings (again sim- 
plified): 

2) The total magnetic quantity 
through any surface is measured by the 
current around its edge. 

[ (current?) - dcx iQm dro- 

To the degree that these two theorems 
were the foundation of Maxwell's elec- 
tromagnetic theory, and it was a very 
large degree, his deepest insight was to 
have made two laws out of what had 
been one. That move was more than 
merely reminiscent of Fourier's transfor- 
mation of heat conduction; it was much 
the same transformation, here arrived at 
by reinserting Faraday's quantity-in- 
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Table 1. Forms of Maxwell's equations (abbreviated set) as they evolved from his initial letter to Thomson in 1854 to the "Electromagnetic theory 
of light" in 1868. The problem of energy and its relation to moving forces is omitted. The last column translates quantities and intensities into 
present-day symbols. 

1854 1855 1868 Present 
(reconstruction of (here limited to the (for source- (including 
verbal description) differential forms) free space) sources) 

Qe = kIe D - eE 

Qm, Im (distinguished geometrically) Law II Qm =kmlm Qm = kmlm B = /LH 

Qe = keI,, (simplified) Law IV Qe = kee = o-E 

V Qm = O(implicit) V Qm = 0 V Qm=0 VB = 0 

V * Qe = 0(closed currents) V Qe 0 V Qe = V D = 47re 

1lm. dX = Qj dj r Law III V x Im Qe V x 1m 4 Q V x H = 4riT + 4- aD 

{ (current?) dX = Qm do- Law I V xIo = Qm V x A = B 

aio aQm _B 
i' dX = - Qm d LawVI Ie = V - I Xl V x E - 

atJat at at 

tensity physics into Thomson's mathe- 
matical heat analogy for electric and 
magnetic forces. 

Now two observations can quickly be 
made regarding the second theorem: 
first, it is wrong as stated, since the mag- 
netic quantity would depend on the size 
and shape of the loop and not only on the 
current; second, the usage of "current 
around the edge" cannot be quite "in- 
tensity of the current, Ie, summed 
around the edge" (as it would have to be 
for symmetry with theorem 1), because 
magnetic quantity has no direct relation 
to current intensity, or tension. Maxwell 
was therefore either not following Fa- 
raday's dynamic reciprocity, or he was 
in something of a predicament con- 
cerning its exact mathematical ex- 
pression. All the evidence points to the 
latter explanation. I suggest that we are 
seeing here, in the loose verbal state- 
ments of the theorems, the initial met- 
aphorical usage of an image which, if 
stated precisely, Maxwell would imme- 
diately have seen to be false. Once used 
loosely, however, as a means for visual- 
izing a complex physical situation, it sug- 
gested creative new ways of treating the 
old problem. 

A Formalized Mutual Embrace 

Only a little more than 1 year after his 
theoretical sketch, Maxwell had gener- 
ated, in his first paper on electricity and 
magnetism, a new structure. He did so 
by inventing a new mathematical de- 
scription to fulfill Faraday's unifying im- 
age of linked rings. In fact, he now raised 
Faraday's captivating but rather dry de- 
scription of the linked axes of power to a 
completely new level of metaphorical ap- 
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peal with the term "mutually embracing 
curves" (9, 10). The process of Max- 
well's creation is of considerable interest 
for the history of science because it illus- 
trates simply and clearly the importance 
of pure imagination. Maxwell was at this 
time neither a sophisticated mathemati- 
cian (although his talent was great) nor 
an experimentally or theoretically learn- 
ed electrician. The mathematics he em- 
ployed came entirely from Thomson's 
recent work in electricity and magnet- 
ism-to such a degree that Maxwell hesi- 
tated to continue his own efforts, think- 
ing Thomson must have "the whole 
draught of the thing lying about in loose 
papers" (11). 

We recall that the mutually embracing 
curves symbolized two sorts of relations 
between the curves: a conduction de- 
scription for each, involving lateral 
quantities and longitudinal intensities, 
and dynamic reciprocity, interrelating 
lateral and longitudinal forces. Max- 
well's seminal paper "On Faraday's 
lines of force," was in two parts, which 
mirror these two relations. In part I he 
developed at length an analogy for lines 
of force in terms of fluid flow through a 
resistive medium, to make the con- 
duction picture for forces as intuitively 
lucid as the traditional action at a dis- 
tance description. In part II he redevel- 
oped the reciprocity of electric currents 
and magnetic lines; and here, at the cru- 
cial juncture where his former theorem 2 
had been inadequate, he showed how a 
new intensity could be defined, consist- 
ent with the mathematics of continuous 
flow, that would complete the missing 
symmetry of his two former theorems. 

Theorem 1, Ampere's law, stated that 
the sum of current quantity through any 
surface is equal to the sum of magnetic 

intensity around the bounding edge. 
Mathematically, Maxwell now realized, 
that relation depended only on the cur- 
rent forming a continuous closed loop 
[IV Qe = 0]. Theorem 2 was an attempt 
at a reciprocal equation for magnetic 
quantity through any surface, which 
should have been related to a longitudi- 
nal property of current around the edge, 
but it could not be current intensity as 
usually defined. Maxwell simply postu- 
lated that an intensity of the required 
kind should exist, since the only mathe- 
matical condition for it was that the mag- 
netic quantity behaved as a continuous 
flow [V Qm = 0]. The analogical con- 
duction description of forces in part I, 
therefore, as applied to closed flow cir- 
cuits of both magnetic force and electric 
current [V * Qm = 0; V ? Qe = 0], guar- 
anteed the possibility of reciprocity in 
the mutually embracing curves of part II. 
Adopting a long-standing label of Far- 
aday's for a supposed electromagnetic 
condition of matter, an electrotonic 
state, Maxwell called his new invention 
the electrotonic intensity. It was not yet 
a physical state, but it could nevertheless 
be imagined physically (9, p. 205): 

We may conceive of the electro-tonic state at 
any point of space as a quantity determinate 
in magnitude and direction, and we may rep- 
resent the electro-tonic condition of a portion 
of space by any mechanical system which has 
at every point some quantity, which may be a 
velocity, a displacement, or a force, whose di- 
rection and magnitude correspond to those of 
the supposed electro-tonic state. This repre- 
sentation involves no physical theory, it is on- 
ly a kind of artificial notation. 

With the seemingly small addition of 
this new intensity, Maxwell completed 
mathematically his earlier attempt at re- 
ciprocal description of current lines and 
magnetic lines in electromagnetic space. 
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(We would say today that he had in- 
vented the vector potential, as Maxwell 
himself later called the electrotonic 
state.) In order to capture the accom- 
plishment, he returned again to a set of 
simple laws, with two laws now for con- 
duction symmetry and two for reciproci- 
ty (9, p. 206): 

Law I. The entire electro-tonic intensity 
[o] round the boundary of [any] surface mea- 
sures the quantity of magnetic induction 
which passes through that surface, or, in oth- 
er words, the number of lines of magnetic 
force which pass through that surface. [Com- 
pare the former theorem 2.] 

l Io' dX = f Qmn do or V x Io = Qmj 

Law II. The magnetic intensity at any point 
is connected with the quantity of magnetic in- 
duction by a set of linear equations, called the 
equations of conduction [Qm = kmlm]. 

Law III. The entire magnetic intensity 
round the boundary of any surface measures 
the quantity of electric current which passes 
through that surface. [Compare the former 
theorem 1.] 

Im *. dA = i Qe dr or V x Im = Qe 

Law IV. The quantity and intensity of elec- 
tric currents are connected by a system of 
equations of conduction [Qe = keIe] 

Although these four laws express the 
embracing curves, they are completely 
general and do not depend on following 
lines of force themselves around closed 
loops. Any embracing loops imagined in 
a space of currents and magnetic lines 
will yield the same relations as a physical 
current loop and a definite magnetic line. 
The theorems represent the structure of 
a constant electromagnetic field in any 
region, no matter how small. 

Note that the conduction equations 
and the reciprocity equations express 
two different sorts of symmetry. The 
electrotonic intensity stands by itself in 
law I without relation to either con- 
duction equation. In that sense the de- 
scriptions of electric and magnetic lines 
are not entirely symmetrical. The reader 
knowledgeable in electromagnetic theo- 
ry will note further that the symmetries 
expressed here are not at all those famil- 
iar from the present-day Maxwell's 
equations, and since they apply only to 
the steady state, they have nothing to do 
with electromagnetic induction (12). In- 
duction became the centerpiece of Max- 
well's theory only at a later stage of de- 
velopment. It did have a prominent place 
even here, however, although not in the 
symmetries. 

The phenomenon of a current being 
produced in a closed conductor when the 
magnetic quantity through the loop 
changed-electromagnetic induction- 
was Faraday's first major discovery and 
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has always been his most famous one. 
By 1850 no credible electrical theory 
could fail to subsume it. Maxwell, there- 
fore, from the beginning of his work in 
1854, had been concerned to describe 
current induction along with the general 
relations of electric and magnetic curves. 
Loosely following Faraday, he had ex- 
pressed the effect originally as follows 
(13): 

The electromotive force along any line [the 
driving intensity tending to produce a current 
along the line] is measured by the number of 
lines of [magnetic force] which that line cuts 
in unit of time. Hence the electromotive force 
round a given circuit depends on the decrease 
of the number of lines which pass through it in 
unit of time. 

Tre ws apoct JJ Qm de 

There was a problem with this descrip- 
tion, however, and one recognized by 
Faraday long before Maxwell. How 
could the magnetic quantity merely pass- 
ing through the loop affect the elec- 
tromotive force at the loop? Would that 
not be action at a distance all over again? 
"It is natural," observed Maxwell in 
1855, "to suppose that a force of this 
kind, which depends on a change in the 
number of lines, is due to a change of 
state which is [merely] measured by the 
number of these lines" (9, p. 187). That 
was Faraday's reasoning in originally 
proposing the electrotonic state. A wire 
in a magnetic field would supposedly be 
in the peculiar state, and when the field 
was removed, the collapse of the state 
would appear as an induced current. 
Maxwell's new mathematical expression 
for an electrotonic state fit the require- 
ment precisely. It provided "the means 
of avoiding the consideration of the 
quantity of magnetic induction which 
passes through the circuit" (9, p. 203). 
Law VI, following those quoted above, 
expressed the relevant relation (14): 

Law VI. The electro-motive force on any 
element of conductor is measured by the in- 
stantaneous rate of change of the electro-tonic 
intensity on that element, whether in magni- 
tude or direction. 

FL a1 l] le I 
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Applied to a closed circuit, that meant 
"the electro-motive force in a closed 
conductor is measured by the rate of 
change of the entire electrotonic in- 
tensity round the circuit referred to unit 
of time" (9, p. 207). 

t4I. . XA = il o . I d 

Only the electrotonic intensity in the cir- 
cuit itself was now in direct action. 

Electromagnetic Propagation and Light 

With the introduction of an elec- 
trotonic state, Maxwell had attained 
what seemed to him at the time a unified 
geometrical, or structural, description of 
electromagnetism, where the structural 
emphasis was on the steady-state rela- 
tions of currents and magnetic forces. 
But the attainment brought a series of 
new problems, including the physical na- 
ture of the electrotonic state; how it was 
transmitted from its origin in a magnet or 
current through nonconducting spaces; 
and how, if it arrived at a secondary con- 
ducting circuit, it induced a current 
there. For Maxwell, following the trend 
of British mathematical natural philoso- 
phy, these problems suggested an an- 
swer based on a mechanical model of the 
luminiferous ether. That new focus 
would shift dramatically the direction of 
his thinking, and would change ultimate- 
ly even the content symbolized by the 
mutually embracing curves. The image 
itself, however, would maintain its sym- 
bolic form and guiding role. 

To see the problem a little more clear- 
ly, and in one of the ways Maxwell saw it 
(15, 16), consider two conducting loops, 
one connected to a battery and contain- 
ing a switch that is to be closed at the 
beginning of a thought experiment. Ac- 
cording to Maxwell's analysis of 1855, 
developed above, the initial increase of 
current would produce an increasing 
electrotonic state everywhere in the sur- 
rounding space which, when it reached 
the second circuit, would appear as an 
induced current. The process could be 
described macroscopically as resulting 
from an increasing linkage of magnetic 
lines through the two circuits, but that 
image conveyed no sense at all, not even 
structurally, either of the physical nature 
of the electrotonic state or of its mode of 
propagation through the nonconducting 
space between two circuits. The image 
of linkage, furthermore, did not apply to 
the peculiar case of induction in open cir- 
cuits, where the effect could only be an 
electrostatic tension between the open 
ends of the conductor. How then were 
electrostatic force and electrotonic in- 
tensity related? 

Maxwell had been concerned about 
these problems in his 1855 paper, where 
he had expressed the hope of providing 
later a mechanical representation of the 
electrotonic state. He had even supplied 
some formal mathematics applicable to 
open circuits, but had explicitly limited 
his application to closed conducting 
loops, with the excuse that "we know 
little of the magnetic effects of any cur- 
rents which are not closed." Even while 
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Fig. 6. Maxwell's representation (corrected 
slightly) of an electromagnetic ether in and 
surrounding a current-carrying conductor. 
The section is transverse through the vortex 
cells but longitudinal through the current, 
which proceeds from A to B as an actual 
translation of idler particles. By tangential ac- 
tion the cells adjacent to the current are set in 
vortex rotation, which in turn exerts a tan- 
gential action on the next adjacent idler parti- 
cles. If free to translate, the latter particles 
will roll along between the rows of cells and 
will constitute an induced current; if not free, 
they will rotate in place, exerting a tangential 
action on the next adjacent cells and setting 
them in vortex rotation. Thus, the magnetic 
lines (linear vortices) will propagate through 
space. 

thus distinguishing open and closed cir- 
cuits, he had nevertheless believed for 
some time, following Faraday, that elec- 
trostatic induction (tension) and current 
conduction were the same, differing only 
in degree of resistivity of the medium: 
"Thus the analogy between statical elec- 
tricity and fluid motion turns out more 
perfect than we might have supposed, 
for there [in statics] the induction goes 
on by conduction just as in current elec- 
tricity, but the quantity conducted is in- 
sensible owing to the great resistance of 
the dielectrics" (17). Could it be, then, 
that electrostatic induction took place in 
closed loops; that an incomplete circuit 
for currents was actually closed by static 
induction in the open space? Maxwell 
apparently did not see the problem in 
quite that explicit form in 1855, or doubt- 
less he would have carried it further, but 
many of the elements of such a concep- 
tion were lying in readiness for a burst of 
new vision, and were surely a powerful 
motivation for its eventual appearance. 
First, however, he would have to con- 
nect the problem of magnetic propaga- 
tion between electric circuits with elec- 
trostatic action, while simultaneously 
both distinguishing current conduction 
from electrostatic induction and equating 
their magnetic effects. That complex of 
relations would form a new basis of in- 
terpretation for the mutually embracing 
curves, this time as a structural image for 
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the physical process of propagation it- 
self. 

Maxwell's flurry of fresh insights 
arose in 1861, when he made good his 
promised mechanical representation of 
magnetic lines, currents, and the elec- 
trotonic state. In "On physical lines of 
force" (18), he presented his notorious 
vortex model of the magnetic ether, us- 
ing the diagram shown in Fig. 6. Each 
line of force was the axis of a vortex fila- 
ment. For adjacent vortices to have the 
same sense of rotation about their axes, 
thereby representing lines of force in the 
same direction, they were supposed to 
be contained in cellular regions sepa- 
rated by "idler" particles, the particles 
being in rolling contact with the cells. 
These idler particles constituted electric- 
ity. They were free, in all substances, to 
rotate in place between rotating cells, 
but in conductors they could also trans- 
late between cells, with more or less re- 
sistance. A stream of them would consti- 
tute a current which, because it exerted a 
tangential action on adjacent cells, 
would set them in rotation as vortices, or 
magnetic lines, surrounding the current. 
The next adjacent idler particles would 
then also be set rolling by tangential ac- 
tion of these first vortex cells (con- 
stituting electromotive force) and if the 
particles could not translate (being in a 
nonconductor) they would set the next 
adjacent cells in rotation, and so on out 
into space in the vicinity of the initiating 
current. Lines of magnetic force would 
thereby be formed surrounding the cur- 
rent at larger and larger radii. Whenever 
the propagating effects reached a closed 
conductor the idler particles would sim- 
ply translate while rolling against the 
next adjacent cells, thereby constituting 
an induced current in the opposite direc- 
tion from the original. Any resistance to 
translation, however, would eventually 
set those next adjacent cells in rotation, 
and the induced current would be 
stopped, thus reproducing the observed 
phenomena of electromagnetic induc- 
tion. 

Considering this strange machinery as 
a heuristic model, valuable for showing 
the possibility of a mechanical theory, 
Maxwell proceeded to show that it re- 
produced exactly the required relations 
between currents, magnetic force, and 
the electrotonic state. And the elec- 
trotonic state had now a simple mechani- 
cal interpretation as rotational momen- 
tum of the vortices. One problem re- 
mained, however, in the initial 
description: what exactly was the mech- 
anism of tangential action that trans- 
mitted rotation from idler particles to 

Q r .Im'dA 
Qe .^-\/Ie-dA 

Light 

Fig. 7. The mutually embracing curves re- 
constituted as the basis of propagation of elec- 
tromagnetic effects. Curve Qe represents an 
actual line of current that is increasing in 
strength and curve Qm represents an actual 
magnetic line, also increasing in strength. The 
remaining curves are imaginary lines around 
which electric and magnetic intensities are 
summed. 

cells, and from the exterior of cells 
through their interior? The vortices had 
to be fluid in order to produce the correct 
dynamic behavior of magnetic lines, but 
they could not be perfectly fluid because 
then no tangential action could occur in 
their interiors. Neither could the con- 
nection between idler particles and cell 
walls be perfectly rigid in normally non- 
conducting space, for then the starting 
and stopping of induced currents would 
be instantaneous, to say nothing of the 
problem of motion of normal bodies 
through such a system. To avoid these 
problems, apparently, as well as to avoid 
dissipation of energy in a merely viscous 
medium, Maxwell proposed in a later in- 
stallment that the cells were elastic and 
that they interacted elastically with 
the idler particles (19). Some such mech- 
anism would explain conveniently prop- 
agation from point to point throughout 
the ether. It would do more, however, 
and that was soon to be the basis for 
transformation of the imagery we have 
been discussing. It would provide an ex- 
planation of electrostatic effects in non- 
conductors and in open circuits. 

Maxwell by now realized that static in- 
duction could not be simply weak con- 
duction, for equally good insulators 
showed widely varying capacities for 
static induction. But if static electric 
charge were merely elastic displacement 
of idler particles, whereas currents in- 
volved extended motion, the difficulty 
would be resolved. The displacement, 
Qe, while it was occurring, would consti- 
tute a brief current, a displacement cur- 
rent, aQ;/3t. And just as the effect of a 
changing magnetic field, when propagat- 
ed to a closed conductor, would be an 
induced current, so the process of propa- 
gation itself would take place by succes- 
sive induction of displacement currents. 
Each such induction by a magnetic vor- 
tex would reinduce a second vortex and 
so on through space. With that famous 
invention, the essentials were complete 
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for Maxwell's remarkable synthesis of 
all contemporary electricity and magnet- 
ism. To set the capstone, he showed that 
the propagation of magnetism by electric 
displacement would occur at the known 
velocity of light. His electromagnetic 
theory of light was immediate: "We can 
scarcely avoid the inference that light 
consists in the transverse undulations of 
the same medium which is the cause of 
electric and magnetic phenomena" (16, 
p. 500). 

The Mutual Embrace Reconstituted 

We have seen that Maxwell's initial 
goal in employing the mutually embrac- 
ing curves was a macroscopic descrip- 
tion, in the steady-state case, of the rela- 
tion between a magnetic field and its as- 
sociated electric currents. Only 
secondarily was electromagnetic induc- 
tion a consideration. If the constant-field 
description led naturally to an ex- 
planation of current induction, it was, at 
that level of analysis, satisfactory; and 
the image of closed linked rings beau- 
tifully fit the criterion. Nevertheless, the 
problem of providing a mechanical vor- 
tex description of a changing field, and of 
the communication of its effects, had 
refocused Maxwell's attention on induc- 
tion as the fundamental aspect of a field 
description. Any change in the magnetic 
field would propagate by successive, and 
reciprocal, inductions of displacement 
currents and magnetic lines. 

Use of the term reciprocal introduces 
the last stage of Maxwell's analysis that 
will be considered here. Dynamic reci- 
procity had always been the foundation, 
for both Faraday and Maxwell, of the 
mutual embrace of electric currents and 
magnetic lines, but a new sense of that 
reciprocity now occurred to Maxwell 
and has since been taken as the symbol 
of his system. Any changing magnetic 
quantity would induce a net elec- 
tromotive force (summed electric in- 
tensity) in any curve surrounding it. The 
response at any point in the medium to 
the electric intensity would be a dis- 
placement current, or electric quantity 
[Q'e = k'ele], obeying continuity of flow 
[V . Q'e = 0]. That changing electric 
quantity, similarly, would induce a net 
magnetic intensity in any curve sur- 
rounding it, and the response at any 
point in the medium would be again a 
continuously flowing magnetic quantity 
[Qm = kmnm; V . Qm = 0]. As the pro- 
cess repeated itself the initial distur- 
bance would propagate in all directions 
in such a way as to preserve the recipro- 
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Table 2. Comparison of Maxwell's equations in the absence of sources in 1868 and at present. 

1868 Present 

Qe = keIe 

Qm = kmIm 

Ile d= - Qm .dr 

at 
orV x Ie = -aQ 

Im, * dX4 =4dit Q' * du 

or V x 1 = 47r Qe at 

V .Q = 0 
V Qm = 0 

cal relation between electric and magnet- 
ic sums over arbitrary closed curves. 
Thus the mathematical relation of mutual 
embrace would itself propagate through 
space. This might be represented as the 
chain of Fig. 7, although it is important 
to recognize that the links in the chain 
could represent actual lines of force only 
in very special circumstances. Since any 
two linked curves could be imagined as 
small as one pleased, the mutual em- 
brace provided a structural representa- 
tion for the overall process of propaga- 
tion from point to point throughout the 
field. With that view, the mechanical 
model became less immediately signifi- 
cant. At the geometrical level mecha- 
nisms in the medium gave way to struc- 
ture in the field, and the electrotonic 
state concomitantly sacrificed its promi- 
nent place to the displacement current. 

True to his style, Maxwell encapsu- 
lated his new conception in a set of 
simple theorems, which once again de- 
fined the reciprocity of electric and mag- 
netic action. They are most clearly set 
out in the form of embracing curves in an 
1868 "Note on the electromagnetic theo- 
ry of light" (20). The new theorems 
should be compared directly with the 
laws stated above in order to capture the 
transformation in content. Law III ap- 
pears here virtually unchanged, but for 
the explicit term embracing: 

Theorem A. If a closed curve be drawn em- 
bracing an electric current, then the integral 
of the magnetic intensity taken round the 
closed curve is equal to the current multiplied 
by 47r. 

Im 'dk = 47r fQe 
- dr 

The intent, however, of the old theorem 
is radically altered, for Maxwell is now 
not so much concerned with current as 
with displacement current. 

D B= E 

B = plH 

E .dA = - a B d-a 
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orV x E = -- 
at 

H . dA =4rr a D . do, 

aD or V x H = 47r- 
at 

V -D =0 

V B =0 

Theorem D. When the electric dis- 
placement increases or diminishes, the effect 
is equivalent to that of an electric current in 
the positive or negative direction. 

aQereplaces Qe at 

In other words, if the total electric dis- 
placement through any closed curve var- 
ies, the rate of change will measure the 
total magnetic intensity around the curve. 

Im* dX = 4r-t JQe d 

The relation reciprocal to this is no 
longer the old law I, connecting magnetic 
quantity and electrotonic intensity in the 
steady state, but law VI, on induction, 
and in the circuital form that had been 
secondary: 

Theorem B. If a conducting circuit [follow- 
ing theorem D, any closed curve in a dielec- 
tric] embraces a number of lines of magnetic 
force [magnetic quantity], and if, from any 
cause whatever, the number of lines is dimin- 
ished, an electromotive force will act round 
the circuit, the total amount of which will be 
equal to the decrement of the number of lines 
of magnetic force in unit of time. 

T fh el e aJn Qc e 

The mutually embracing curves have 
been here reconstituted as mutually in- 
ducing curves of magnetism and electric 
displacement. Two additional equations, 
of conduction, relate magnetic quantity 
to magnetic intensity, and electric dis- 
placement (quantity) to electromotive 
force (intensity). Thus the reciprocity of 
the new curve is complete in a way in 
which the earlier image was not, for the 
quantities and intensities of the con- 
duction relations are the same as those 
reciprocating in the induction relations. 
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That is the tight symmetry familiar in our 
present Maxwell's equations in the 
absence of charges or currents, as shown 
in Table 2. 

Conclusion 

We have followed the evolution of a 
single image through mutliple stages in 
Maxwell's conceptualization of the elec- 
tromagnetic field. The mutually embrac- 
ing curves served to anchor his ideas, 
from start to finish, on a geometrically 
solid framework to which all speculation 
could be tied. At the same time the struc- 
ture itself suggested new paths of investi- 
gation-through the flow analogy, for ex- 
ample, and through reciprocal dynamics. 
A consistent mathematical formulation 
for the electrotonic state was the first re- 
sult, with strong hints of more to come. 
The extensions emerged as the dis- 
placement current and the concomitant 
picture of propagation of electro- 
magnetic effects through a medium, all 
firm ground for an electromagnetic theo- 
ry of light. But the new perceptions, re- 
flected back on the old imagery, required 
its reformulation. With propagation at 
the center of attention, the mutual em- 
brace of electricity and magnetism was 
reconstituted as mutual induction-still a 
mutual embrace, but productive now of 
offspring. 

A somewhat different summary of 
Maxwell's work arises from reflecting on 
the usual reconstruction of his insights. 
It has often been said that Maxwell's 
contribution to electromagnetic theory 
consisted fundamentally in adding the 
displacement current [47r AD/dt] to Am- 
pere's law [V x H = 4irj] and that he 
was motivated either by the need to pre- 
serve charge conservation in open cir- 
cuits or by his perception of a need to 
complete the symmetry with Faraday's 
law of induction [V x E = -aB/Ot]. 
There is a sense in which each of these 

claims is true, but as the analysis above 
has shown, they miss entirely the histori- 
cal core of Maxwell's thinking. He did 
add the displacement current, but far 
more fundamental was his expression of 
Ampere's law with a quantity-intensity 
distinction built in. He was concerned 
with charge conservation in open cir- 
cuits, but before that problem could even 
arise explicitly he had to distinguish be- 
tween conduction and static induction. 
He was deeply concerned with the sym- 
metry between electricity and magnet- 
ism, but his original symmetry did not in- 
volve electromagnetic induction at all; 
instead he followed Faraday's dynamic 
reciprocity between a constant current 
and its associated constant magnetic 
force. Completing the symmetry of these 
mutually embracing curves produced a 
second form of Ampere's law and an 
electrotonic state [mathematically our 
vector potential V x A = B]. The dis- 
placement current arose not from sym- 
metry considerations but from Max- 
well's attempt to elaborate mechanically 
the meaning of the electrotonic state, es- 
pecially for open circuits and for the 
transmission of magnetic effects to pro- 
duce current induction. Only with the 
displacement current in full view did 
Maxwell reformulate his conception of 
mutual embrace on the basis of electro- 
magnetic induction rather than steady- 
state currents. Thus the present-day 
symmetry of Maxwell's equations de- 
rived from the role of the displacement 
current, rather than the displacement 
current arising from symmetry. 
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