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Mitochondrial DNA Analyses and the Origin and Relative 

Age of Parthenogenetic Lizards (Genus Cnemidophorus) 

Abstract. Morphological, karyological, and allozyme analyses indicate that the 

parthenogenetic lizards Cnemidophorus neomexicanus and diploid C. tesselatus are 
hybrids formed, respectively, by crosses involving the bisexual species C. tigris a nd 
C. inornatus, and C. tigris and C. septemvittatus. Mitochondrial DNA, which is in- 

herited maternally, was obtained from each of these species. Analyses of the mito- 
chondrial DNA's and their restriction endonuclease digestion products by electron 
microscopy and agarose gel electrophoresis support the hybridization hypothesis by 
indicating that C. tigris (specifically the subspecies marmoratus) was the maternal 
parent species for both C. neomexicanus and C. tesselatus. Furthermore, these data 

imply that these two parthenogenetic species are younger than some races of C. 
tigris. 
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Approximately 13 species of whiptail 
lizards (Cnemnidophorus) are known to 
reproduce parthenogenetically (1). Ten 
of these species, including C. neo- 
mexicanuts and C. tesselatus, occur in 
the southwestern United States and 
northern Mexico. Analyses of karyology 
and morphology suggested that C. neo- 
mexicanus and diploid C. tesselatus orig- 
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inated, respectively, by hybridization 
between the bisexual species C. tigris 
and C. inornatus (2), and between C. 
tigris and C. septemvittatus (3). Sub- 
sequent analyses of allozymes (4) added 
support to this hypothesis by demon- 
strating that both parthenogenotes are 
heterozygous for alleles unique to one or 
the other of the postulated parental spe- 
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Fig. 1. Electron micro- 
graphs of fragments 
of mitochondrial DNA 
that contain the res- 
pective origins of 
DNA replication from 
(a) Cnemidophorus in- 
ornatus and (b) C. 
tigris mundus. The 
lengths AB and CD 
define the position of 
the D-loop, BC, on 
the fragment (8). Dur- 
ing replication, D- 
loops expand unidi- 
rectionally, thus de- 
creasing either AB or 
CD. The origin, de- 
fined as the fixed fork 
of the D-loop, and the 
direction of replica- 
tion are determined 
by measurements of 
fragments that con- 
tain expanding D- 

direction is toward A. 
1 and 3 in C. inornatus 
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Table 1. The recognition sites for Eco RI and 
Hind III in mitochondrial DNA of Cnemido- 
phorus species. Numbers correspond to sites 
mapped in Fig. 3. 

Cnemido- Recognition sites 
phorus 
species Eco RI Hind III 

inornatus 1,3 3,4,5,6 
gularis 1,3,5 1,3,4,5,6 
septemvittatus 1,2,3,4,5 1,3,4,5,6 
tigris 

mundus 3,4,5 2,3,4,5,6 
tigris 3,4,5 2,3,4,5,6 
variolosus 2,3,5 Unknown 
gracilis 3,4,5 3,4,5,7 
mnarmoratus 3,4,5 3,4,5,6,7 

neomexicanus 3,4,5 3,4,5,6,7 
tesselatus 3,4,5 3,4,5,6,7 

cies. Recently the role of hybridization 
in the origin of parthenogenetic lizards 
has been questioned, especially the in- 
volvement of C. tigris in the formation of 
C. neomnexicantis (5). 

We demonstrate here that compara- 
tive analyses of mitochondrial DNA 
(mtDNA), known to be maternally inher- 
ited (6), yield data that can be used to 
determine the species identity of the fe- 
males that contributed the eggs that pro- 
duced the first C. neomnexicanuts and C. 
tesselatus. 

The mritochondrial genome in verte- 
brates is a closed circular duplex DNA 
with a unidirectional mode of replication 
(7). The position of the origin of replica- 
tion (at one end of the D-loop) (Fig. 1) 
and the direction of replication can be 
determined with electron microscopy 
(8). Animal mtDNA can be cleaved by 
type II restriction endonucleases (8). 
When these enzymes encounter a specif- 
ic DNA base sequence, they make a 
double-strand cleavage within the se- 
quence (9). For example, the sequence 
recognized by the endonuclease Eco RI 
is G I AATTC and by the endonuclease 
Hind III is A 4 AGCTT (the arrows in- 
dicate the sites of cleavage) (9). Thus, 
the circular mtDNA molecules are 
cleaved into fragments, the number and 
size of which depend directly on the 
number and positions of recognition sites 
or sequences. The size and relative order 
of the genome fragments can be deter- 
mined by electron microscopy and by 
agarose gel electrophoresis, allowing the 
recognition sites to be mapped relative to 
the D-loop (8). For comparative pur- 
poses, homology of recognition sites be- 
tween species is assumed when cleav- 
ages occur at the same (+ 1 percent) map 
position relative to the origin and direc- 
tion of replication. There is evidence (8, 
10) that the gene content and relative 
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gene order in animal mtDNA may be 
highly conserved. However, the rate of 
mtDNA sequence evolution has been 
demonstrated to be at least as fast as that 
of the nonrepetitive portion of nuclear 
DNA (6, 8, 11, 12) and some estimates 
indicate an even faster rate (8, 12). Be- 
cause of these properties, analyses of 
mtDNA can be especially useful in as- 
sessing relationships of closely allied 
species. 

Mitochondrial DNA was prepared 
from heart, kidney, and liver tissues 
from individuals (13) of four bisexual 
species (C. inornatus, C. gularis, C. tig- 
ris, and C. septenmvittatus) and two par- 
thenogenetic species (C. neomexicanus 
and C. tesselatuts) (14) by the procedure 
outlined by Brown and Vinograd (8). In- 
cluded in the samples for C. tigris were 
individuals of the subspecies gracilis, 
inarmoratus, mitundus, tigris, and iari- 
olosus. To facilitate direct comparisons, 

20 

10 
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-o 
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Fig. 2. Diagram of bands observed after 
agarose gel electrophoresis of the fragments 
produced by Eco RI or Hind III digestion of 
mitochondrial DNA from Cnemidophorus 
species. The fragment sizes, expressed as 
numbers of nucleotide pairs, are based on 
estimates from both gel electrophoresis and 
electron microscopy (15). Lanes 1 to 5 repre- 
sent the bands obtained by Eco RI digestion 
of mitochondrial DNA from: lane 1, C. in- 
ornatus; lane 2, C. gularis; lane 3, C. septem- 
vittatus; lane 4, C. tigris variolosus; lane 5, 
C. tigris (mundus, tigris, gracilis, marmora- 
tus), C. neomexicanus, and C. tesselatus. 
Lanes 6 to 11 represent the bands obtained by 
Hind III digestion of mitochondrial DNA 
from: lane 6, C. inornatus; lane 7, C. gularis 
and C. septemvittatus; lane 8, C. tigris (mun- 
dus and tigris); lane 9, C. tigris variolosus; 
lane 10, C. tigris gracilis; lane 11, C. tigris 
marmoratus, C. neomexicanus, and C. tes- 
selatus (14). The arrow in lane 7 indicates a 
band containing two fragments of essentially 
equal size. The Hind III band for C. tigris 
variolosus was obtained by a single determi- 
nation using mitochondrial DNA from only 
one individual and thus is regarded as tenta- 
tive. 
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Fig. 3. Composite maps of mitochondrial 
DNA molecules for the Cnemidophorus spe- 
cies with the most probable sites of Eco RI 
and Hind III cleavage plotted. The origin of 
DNA replication is at 0, replication pro- 
ceeding clockwise. Numbered arrows in- 
dicate all cleavage sites revealed in the analy- 
ses. The sites present in the taxa sampled are 
described in the text and Table 1. 

the sizes of the intact mitochondrial ge- 
nomes for four species (C. tigris mundus, 
C. inornatus, C. neomnexicanus, and C. 
tesselatus) were determined by contour 
length measurements from electron mi- 
crographs. No significant differences in 
size were found among the four genomes 
(15). 

In contrast to the size homogeneity of 
the intact genomes, the sizes and num- 
bers of mtDNA fragments produced by 
Eco RI or Hind III restriction endo- 
nuclease digestion differ for most of the 
taxa. The sizes of the Eco Rl-generated 
fragments (Fig. 2) differed among the 
samples from the four bisexual species, 
but the fragment sizes from C. neo- 
inexicanuts, C. tesselatus, and four of the 
five subspecies of C. tigris were identi- 
cal. The Hind III fragment sizes (Fig. 2) 
from most of the bisexual species 
(though not from C. gtilaris and C. sep- 
tenvittatuis) and most of the subspecies 
of C. tigris (though not from iundus and 

tigris) also differed. The Hind III frag- 
ment sizes from C. neomnexicanis, C. 

tesselatlus, and C. tigris inarmoratus 
were identical. 

Electron microscopy was used to de- 
termine the positions of the Eco RI and 
Hind III cleavage sites in the mtDNA of 
C. inornatus, C. tigris inundus, C. tesse- 

latus, and C. neomnexicanus relative to 
the origin and direction of replication. 
Cleavage maps were prepared from 
these data. From the data on fragment 
sizes obtained by gel electrophoresis we 
have also been able to propose more ten- 
tative maps for the remaining taxa (Fig. 
3) (Table 1). The analyses revealed a to- 
tal of five Eco RI and seven Hind III 
recognition sites. Both parthenogenetic 
species had Eco RI sites 3, 4, and 5 and 
Hind III sites 3, 4, 5, 6, and 7. These 
conditions are shared only with C. tigris, 
the former with four of the five races and 
the latter with C. t. marmoratus. Thus, 
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on the basis of both data sets, C. tigris 
(but clearly not C. inornatus or C. sep- 
temvittatus) is identified as the most 
likely maternal parent species for both 
C. neomexicanus and C. tesselatus. 
Moreover, the Hind III data indicate 
that C. t. inarinoratus was the particular 
geographic race that was involved in the 
hybridizations. This implies that the for- 
mation of both parthenogenetic species 
has occurred more recently than the di- 
vergence of some races of C. tigris (16). 

This restriction endonuclease analysis 
of mtDNA of bisexual and parthenoge- 
netic species of Cnemnidophorus in- 
dicates a great utility for the approach. 
In addition to yielding data for estimating 
maternal parentage of parthenogenetic 
organisms, the focus of this study, the 
results underscore its potential useful- 
ness in assessing evolutionary relation- 
ships of bisexual organisms. 

WESLEY M. BROWN* 
JOHN W. WRIGHT 

Section of Herpetology, 
Naturall Histo ry Mtsetumn, 
Los Angeles, California 90007 
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on the basis of both data sets, C. tigris 
(but clearly not C. inornatus or C. sep- 
temvittatus) is identified as the most 
likely maternal parent species for both 
C. neomexicanus and C. tesselatus. 
Moreover, the Hind III data indicate 
that C. t. inarinoratus was the particular 
geographic race that was involved in the 
hybridizations. This implies that the for- 
mation of both parthenogenetic species 
has occurred more recently than the di- 
vergence of some races of C. tigris (16). 

This restriction endonuclease analysis 
of mtDNA of bisexual and parthenoge- 
netic species of Cnemnidophorus in- 
dicates a great utility for the approach. 
In addition to yielding data for estimating 
maternal parentage of parthenogenetic 
organisms, the focus of this study, the 
results underscore its potential useful- 
ness in assessing evolutionary relation- 
ships of bisexual organisms. 
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County (127364); C. t. tigris, Nevada: Mineral 
County (127365-66); and C. t. variolosus, 
Nuevo Leon: near Villa de Garcia (121626). 

14. R. G. Zweifel [Am. Mus. Novit. 2235, 1 (1965)] 
characterized six pattern classes (A to F) of C. 
tesselatus. It was later determined that pattern 
classes C to F are diploid and A and B triploid 
(3). All individuals of C. tesselatus used in this 
analysis are referable to pattern class E. 

15. The genome sizes (mean number of base pairs 
+ standard deviation) for mtDNA's of C. tigris 

mundus, C. inornatus, C. neomexicanus, and C. 
tesselatus were, respectively, 17,600 ? 500 
(N = 19 molecules measured), 17,400 ? 200 
(N = 20), 17,300 ? 500 (N = 27), and 
17,500 ? 400 (N = 21). Bacteriophage PM2 
DNA was used as an internal size standard for 
contour length measurements. This DNA has 
10,000 ? 250 base pairs, calculated by com- 
paring its contour length with that of bacterio- 
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procedure depends on kinetic energy 
analysis (I) to identify the products of 
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teristic ions in a reversed-geometry mass 
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spectrometer (2) fitted with a chemical 
ionization (CI) ion source. This method 
(3) retains the high sensitivity of tech- 
niques (4) in which elemental cornposi- 
tions from high-resolution mass spec- 
trometry are used to characterize the 
base. Our technique allows the detection 
of components in a mixture by providing 
structural information on ions which are 
directly formed from given molecules. 
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Fig. 1. A MIKE spectrum of mass 1264 salmon sperm DNA is compared to mass 1264 from 5- 
methyldeoxycytidine phosphate. The abscissa is calibrated in terms of both the mass and the 
kinetic energy of the fragment ions. 

0036-8075/79/0323-1249$00.50/0 Copyright ? 1979 AAAS 1249 

1108 

11111 

m/z 126 110 95 85 80 75 70 65 60 55 50 
%E 100 85 75 65 60 55 50 45 40 

Fig. 1. A MIKE spectrum of mass 1264 salmon sperm DNA is compared to mass 1264 from 5- 
methyldeoxycytidine phosphate. The abscissa is calibrated in terms of both the mass and the 
kinetic energy of the fragment ions. 

0036-8075/79/0323-1249$00.50/0 Copyright ? 1979 AAAS 1249 

Modified Bases Characterized in Intact DNA by 
Mass-Analyzed Ion Kinetic Energy Spectrometry 

Abstract. Pyrolysis of DNA into a chemical ionization source yields protonated 
bases and other base-containing ions. Kinetic energy spectra allow the character- 
ization of the bases 5-methylcytosine and l-mnethyladenine fiom underivatized 
salmon sperm DNA. Isomeric bases are (listinguishable with this technique. 
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