
Cone Inputs to Ganglion Cells in Hereditary Retinal Degeneration 

Abstract. The photoreceptor layer degenerated, but cone nuclei apparently devoid 
of outer segments were retained in retinas of aged rats of the Royal College of Sur- 
geons strain from which optic tract activity was recorded. Measures of sensitivity 
showed these single axons of retinal ganglion cells to have photopic spectral re- 
sponses. Cone remnants containing a cone pigment may be the photoreceptive ele- 
ments in these retinas. 

Retinal cellular degeneration as a con- 
sequence of inherited disease occurs in 
many species (1). The process of degen- 
eration may reveal aspects of cellular 
structure, function, or interactions that 
could characterize the disease or yield 
information about healthy cell life. 

The progressive degeneration of the 
retina in the Royal College of Surgeons 
(RCS) strain of rats results in a steady 
decline in the electroretinogram (ERG) 
and morphological changes beginning 
with an accumulation of extracellular la- 
mellae between the photoreceptors and 
pigment epithelium (2, 3). According to 
early reports, the retina is ultimately de- 
nuded of photoreceptor cells, but the 
rest of the retina remains, by com- 
parison, fairly intact (2, 3). The progress 
of the disease is slowed by rearing the 
animal in the dark (2), yet after 150 days, 
even dark-reared animals show no mea- 
surable ERG (4). Noell and his col- 
leagues were the first to show that axonal 
activity of single ganglion cells could be 
recorded from the optic tract of RCS rats 
even after the ERG had dissipated (5). 
Histology using glutaraldehyde fixation 
and thin plastic sections makes it clear 
that small numbers of nuclei of photore- 
ceptor cells survive even in RCS animals 
as old as 2 years (6). These cells lack out- 
er segments but appear to make synaptic 
contact with presumed bipolar and hori- 
zontal cell processes (6). Since visual 
pigment is housed mainly in the outer 
segments (7), these cells seem to be 
stripped of their fundamental ability to 
catch light quanta. 

Behavioral measures reveal, however, 
that functional vision remains in 2-year- 
old RCS animals (6, 8). Can the remain- 
ing photoreceptor remnants, most of 
which are likely to be cone cells stripped 
of their outer segments (6), subserve vi- 
sion in the aged RCS rat? We investi- 
gated the possibility that the spectral 
sensitivities of single ganglion cell axons 
recorded in the optic tract might indicate 
the surviving mechanisms mediating vi- 
sion in the aged RCS rat. 

We have found that the sensitivities of 
the ganglion cell axons recorded in the 
optic tract of RCS rats decline with age. 
Dark-adapted spectral sensitivities of 
single units recorded from RCS animals 
older than 5 months suggest a photopic 
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mechanism in contrast to all dark-adapt- 
ed ganglion cells in the normal animal, 
which show a scotopic spectral sensitivi- 
ty. Histological studies corroborate this 
picture. The numbers of photoreceptor 
cells decline steadily with age, and the 
photoreceptor population changes in 
composition from predominantly rod 
(1.2 percent cones in the normal rat) to 
predominantly cone (73 percent cones at 
197 days in the RCS rat). 

Rats were anesthetized and paralyzed, 
and their respiration was controlled arti- 
ficially. Blood pressure was monitored. 
A full eye ring provided further eye sta- 

bilization. The pupil was dilated, and a 
clear contact lens protected the eye (9). 
Single units in the optic tract were re- 
corded with tungsten-wire-in-glass elec- 
trodes (Levick). The test light (150-W 
xenon arc lamp, Osram XBO 150 W/l) 
fully illuminated the surface of a diffus- 
ing Ping-Pong ball placed over the eye. 
This proved to be an effective way of 
maximally stimulating units with re- 
duced sensitivities in RCS rats. Neutral- 
density and narrow-band interference fil- 
ters, calibrated in the apparatus, were 
used in the test beam. The backgrounds 
were provided through a second channel 
illuminated by a 100-W solid tungsten 
lamp (General Electric). An on-line com- 
puter generated poststimulus time histo- 
grams. Luminances of test lights were 
adjusted to give criterion responses. 
Typically the impulse trains to ten pre- 
sentations of the stimulus were com- 
bined to yield each histogram. A firing 
rate of five spikes per second above the 
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Fig. 1. Spectral sensitivity measurements for normal albino rats, 3-month-old RCS rats, and 5- 
month-old RCS rats. Each small circle represents a single measurement; large circles are used 
to represent multiple coincident determinations. The curves are derived from the Dartnall 
nomogram and have peaks of 500 or 520 nm chosen to best fit the data. The rhodopsin nomo- 
gram curve peaking at 500 nm fits the spectral sensitivity of units in the normal rat. At 3 months 
of age in the RCS rat, two classes of units were encountered. One class had spectral sensitivities 
matching the rhodopsin nomogram curve. The second class of units in this age group had spec- 
tral sensitivities showing an increased long wavelength sensitivity and matching the nomogram 
curve peaking at 520 nm. All units encountered and classified in the 5-month-old RCS rat 
showed photopic spectral sensitivities. The bulk of the units matched the nomogram curve 
peaking at 520 nm. The solid curve through the data for this age group is the nomogram curve 
peaking at 520 nm. The broken nomogram curve peaks at 500 nm and shows the consistent 
deviation from the rhodopsin template in these units. 
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baseline rate was designated a threshold 
response. Straightforward and quick 
comparisons of the histograms gave re- 
liable estimates of threshold. Seventeen 
pink-eyed, tan-hooded RCS rats ranging 
in age from 69 to 197 days and seven con- 
trol albino Sprague-Dawley rats (herein 
called "normal") ranging in age from 84 
to 300 days were studied (10). We now 
report on two age groups of RCS rats, 
those near 90 days of age and those near 
150 days of age and older. 

The relative sensitivity differences of 
units found in normal and RCS animals 
are shown in Fig. 1. For sensitivity to 
500-nm light, near 90 days of age most 
units had thresholds elevated 1.56 log 
units above normal [standard error of the 
mean (S.E. M.), 0.17]. A small number of 
units recorded from animals at this age 
had thresholds elevated more than 2 log 
units above the majority of the RCS units 
(3.98 ? 0.49 S.E.M. with respect to the 
normal animals). Animals near 150 days 
of age or older had thresholds which 
were elevated 4.48 ? 0.09 log units 
above the normal. 

In the normal rat, all units showed 
dark-adapted spectral sensitivities 
matching the rhodopsin nomogram curve 

peaking at 500 nm (Fig. 1) ( 1). At 3 
months of age, 3/4 of the units recorded 
from RCS rats had spectral sensitivities 
that conformed to the rhodopsin nomo- 
gram curve. The few units at 3 months of 
age with dark-adapted thresholds 2 to 
3 log units above the rhodopsin units 
had clearly photopic spectral sensitivi- 
ties; they conformed to a nomogram 
curve peaking at 520 nm. At 5 months of 
age, all units encountered and classified 
showed photopic spectral sensitivities 
(12). The largest number of units at this 
age conformed to a single pigment nomo- 
gram curve with peak wavelength of 520 
nm (Fig. 1). 

Anatomical examination of the retinas 
from each of the three groups of animals 
supports the physiological findings (Fig. 
2). Glutaraldehyde fixation, methylene 
blue staining, plastic embedding, and 
thin sectioning enhanced the visual- 
ization of the photoreceptor nuclei (13). 
The disappearance of photoreceptor out- 
er segments appears to be complete 
by 197 days. There was also a progres- 
sive thinning of the outer nuclear layer. 
The number of photoreceptor nuclei 
per 1000-btm2 area of the retina de- 
clined from 5.34 ? 0.24 rod nuclei and 

Fig. 2. Representative light micrographs of retinas from a 99-day-old normal albino rat (A) and 
RCS rats at 86 days (B) and 197 days (C). Abbreviations: PE, pigment epithelium; OS, outer 
segments; ONL, outer nuclear layer; OPL, outer plexiform layer; and INL, inner nuclear 
layer. Large arrows (in A and B) mark examples of nuclei in the ONL that were identified as 
cone nuclei; small arrows (in B and C) mark those identified as rod nuclei. Scale bar, 5 utm. 
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1.92 ? 0.15 cone nuclei in the 86-day-old 
RCS rat to 0.64 ? 0.41 rod nuclei and 
1.76 ? 0.29 cone nuclei in the 197-day- 
old RCS rat. These numbers contrast 
with the 225 ? 3.54 rod nuclei and 
2.67 ? 0.27 cone nuclei in the normal al- 
bino at 99 days of age. Thus, there is a 
decline in the photoreceptor population 
and a concomitant change in its composi- 
tion from predominantly rod (1.2 percent 
cones in the normal) to predominantly 
cone (73 percent cones at 197 days of age 
in the RCS rat). 

Optic tract recordings of retinal gangli- 
on cell activity thus show that a physio- 
logically functioning postretinal visual 
pathway still exists in older RCS rats. 
Despite extensive degeneration of the 
photoreceptor layer, light-driven signals 
originating in the retina are passed on to 
higher centers by way of the optic tract. 
These signals could be the basis for be- 
haviorally measured visual capacity in 
older RCS rats (6, 8). We have shown 
that the spectral sensitivities of single 
ganglion cell axons recorded in the optic 
tract do not match that of rhodopsin, the 
visual pigment contained in rods, but 
rather implicate a cone photopigment as 
the basis for visual function. We have al- 
so shown a progressive change from a 
predominantly rod to a predominantly 
cone retina until, at 197 days in the dark- 
reared RCS rat, the only elements of the 
photoreceptor layer retained in near nor- 
mal numbers are the cone cells, appar- 
ently devoid of outer segments (14). It is 
therefore possible that surviving cone 
remnants with a store of visual pigment 
(15) may be able to respond to light and 
effectively drive higher-order neurons. 
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DNA Repair and Longevity Assurance in Paramecium tetraurelia 

Abstract. At given doses and clonal ages, ultraviolet irradiation-induced DNA 
damage reduced clonal life-span, but when followed by photoreactivation, extension 
of clonal life-span was observed. If photoreactivation preceded the ultraviolet treat- 
ment, no significant beneficial effect was detected. Because studies of others have 
shown that photoreactivation repair monomerizes the ultraviolet-induced cy- 
clobutane dimers in DNA, but does not affect the other photoproducts, these results 
indicate that DNA damage can influence the duration of clonal life-span unless that 
damage is repaired. Repeated treatment with ultraviolet and photoreactivation re- 
sulted in significant mean and maximal clonal life-span extension when compared 
with untreated controls, and it is assumed that the rejuvenation effect was due to the 
correction or prevention of some age damage. 
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Paramecia were used to study the bio- 
logical effect of ultraviolet-induced DNA 
damage versus photoreactivation (PR)- 
repaired damage on clonal senescence. 
These cells exhibit cellular aging (1), 
show age-correlated sensitivity to ul- 
traviolet reversible by PR (2), have been 
shown to monomerize induced dimers by 
PR in their nuclear DNA (3), express 
age-induced mutations (4, 5) suggesting 
loss of repair with increased age, and 
have many parallels with human cells in 
culture (4, 6). Clonal senescence can be 
characterized by a decreased probability 
that a given cell will give rise to a viable 
cell at the next cell division (1, 7). As in 
multicellular organisms, fertilization 
marks the origin of a new generation, 
and predictable changes occur in the 
phenotypes of cells (1, 2). Death of the 
clone occurs some 150 to 200 cell divi- 
sions, or fissions, later-in about 40 
days, when the procedures described be- 
low are used. 

Aging cells were maintained in daily 
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ment was given 1V/2 hours after cell division. Age (fissions) 
The experiment starts at 100 percent survival since only those cells which had attained that age 
were used. Fig. 2 (right). Induced resistance to ultraviolet. The effect of the same dose of 
ultraviolet (2700 erg/mm2) on clonal life-span varied when cells 140 fissions old were pre- 
viously untreated (open squares) or had received ultraviolet plus photoreactivation when 80 
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which received ultraviolet plus photoreactivation when 80 fissions old (open circles) are 
included. 
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