
complete (9). However, several impor- 
tant results are already in hand: 

1) Processing of the calibration-signal 
data is complete and shows that for the 
duration of the observations at all four 
tracking stations, the receiving and re- 
cording systems functioned perfectly, 
and that the contributions of any in- 
stabilities in these systems to errors in 
the probe velocity determinations should 
be insignificant (smaller than about 1 mm 
sece1). 

2) Partial processing of bus and probe 
data from all four stations reveals signals 
of the expected strengths and phase 
stabilities. The probe data already exam- 
ined include some from lower-atmo- 
sphere and postimpact observations; no 
difficulty from scintillation has been en- 
countered. 

3) Completed analyses of "control" 
experiments, in which we used all of the 
same equipment and computer programs 
for observations of other spacecraft that 
simulated the Pioneer Venus bus and 
probes with respect to their spatial or RF 
separations, or both (10), showed that er- 
rors from all relevant sources, including 
both '"instrumental" effects and dif- 
ferential propagation medium effects, 
were equivalent to less than a velocity 
error of 10 cm sec-' at Venus. 

On the basis of these results and those 
of other detailed theoretical and experi- 
mental studies of error sources (11), we 
believe that the uncertainties of our final 
determinations of the velocity vectors of 
the Pioneer Venus probes, relative to 
Venus and averaged over intervals of 100 
seconds, will be less than 0.3 m sec-' for 
all components (12). In future reports, 
we hope to present such determinations 
and also to compare and combine them 
with the pressure, temperature, radia- 
tion-flux, vertical acceleration, turbu- 
lence, and composition measurements 
obtained from the other Pioneer Venus 
experiments, in order to better under- 
stand Venus's global atmospheric circu- 
lation. 
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Pioneer Venus Radar Mapper Experiment 

Abstract. Altimetry and radar scattering data for Venus, obtained from 10 of the 
first 13 orbits of the Pioneer Venus orbiter, have disclosed what appears to be a rift 
valley having vertical relief of up to 7 kilometers, as well as a neighboring, gently 
rolling plain. Planetary oblateness appears unlikely to exceed 112500 and may be 
substantially smaller. 
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The radar mapper experiment (1) car- 
ried aboard the Pioneer Venus orbiter 
spacecraft has three major scientific ob- 
jectives. The first, and most important, is 
to measure the height of the spacecraft 
above the local surface immediately be- 
low. The second is to analyze the 
strength and delay distribution of the 
echo to determine the physical charac- 
teristics of the scattering region. These 
first two tasks are carried out simultane- 
ously during that small portion (about 0.8 
second in duration) of each spacecraft 
roll when the 30? beamwidth of the radar 
antenna, which is programmed to move 
appropriately in the plane containing the 
spacecraft's axis of rotation, sweeps 
across the nadir direction. The third ob- 
jective is realized about 1.5 seconds ear- 
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lier or later than the altimetry observa- 
tions, when the antenna is directed by 
the spacecraft's rotation to one side or 
the other of the nadir. At these times, 
echoes are analyzed in delay and Dop- 
pler frequency, to obtain 64 picture ele- 
ments of a relatively coarse side-looking 
radar scattering image. Because of echo- 
strength limitations, the imaging can on- 
ly be carried out at altitudes less than ap- 
proximately 500 km above the surface. 
Altimetry is possible at all spacecraft al- 
titudes below 4700 km. 

In the orbit achieved by the Pioneer 
Venus orbiter, altimetry is possible over 
a band extending from 74?N latitude 
through the equator to about 63?S. [We 
have used the following values for the 
Venus north pole position (1950:0); 
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right asecension, 273.3?; declination 
67.3?, as adopted by the Pioneer Venus 
project. In the corresponding planeto- 
graphic (body-fixed) coordinate system, 
the spacecraft's orbit has an inclination 
of 105.6? and a value for the latitude of 
periapsis of 16.9?. All longitudes quoted 
in this report are based on the IAU-de- 
fined origin as given in (2).] Precise 
knowledge of the spacecraft's actual 
orbital position as a function of time is 
necessary in order to convert the height 
observations into a topographic map and 
to properly locate the radar images in 
planetographic coordinates. 

In order to preserve the full ac- 
curacy (about 0.1 km) of the instru- 
ment's altitude measurements in their 
conversion to planetary radii, it is nec- 
essary to know the spacecraft's radial 
location at the time of the observations 
to a correspondingly better accuracy. At 
orbital positions far removed from peri- 
apsis, where the magnitude of the radial 
velocity is 4.4 km/sec, this requirement 
translates into an orbital timing accurate 
to better than 0.023 second. Also, the 
radial component of the orbital geometry 
must be known to better than 0.1 km 
with respect to the planet's center of 
mass. Meeting these accuracy require- 
ments, particularly the former, is a for- 
midable navigational task in the best of 
circumstances. In the present case, 
where periapsis is sufficiently low (150 to 
180 km) so that atmospheric drag is sig- 
nificant, where periapsis occurs out of 
sight from Earth many minutes into plan- 
etary occultation, and where numerous 
orbital trim maneuvers have been per- 
formed, the task is hopeless. Thus, it is 
necessary to lean heavily on other refer- 
ence data in order to stabilize the abso- 
lute values for surface radii obtained in 
this experiment. Such data include 
ground-based radar determinations of 
planetary radii (3), largely available only 
for locations along the Venus equator, 
and relative values for the radius ob- 
tained from atmospheric pressure mea- 
surements made by surface probes. 

Orbit-to-orbit comparisons are facili- 
tated because data are available from 
most of the orbits near northern culmina- 
tion, where the ground tracks converge 
and intersect. Thus, it is easy to bring 
neighboring orbits into approximate 
agreement, and this has been done for 
the group consisting of orbits 4 to 13 (8 to 
17 December 1978), which is considered 
in this report. 

Within the narrow strip for which we 
have accumulated altimetry coverage, a 
variety of topographic forms exists. It is 
not yet possible to attempt to analyze all 
of them. We have, therefore, concen- 
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trated on contrasting two distinctive re- izontal scale of 100 km and significant 
gions. Figure 1 illustrates, perhaps not meter-sized surface undulations. Fur- 
surprisingly, that there is a close correla- thermore, areas of high relief have rela- 
tion between high "local" relief at a hor- tively variable reflectivity, whereas 
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Fig. 1. Profiles of topography, smoothness, and reflectivity for two Venusian regions, one (a) 
with high local topographic relief, the other (b) with low local relief. Elevations are referenced 
to an arbitrary datum equivalent to a planetary radius of 6045 km (a value less than the mean 
planetary radius was selected to ensure that all elevations would be positive). Correspondence 
among low values of smoothness (surface undulations), variable reflectivities, and high local 
relief. Profile a follows line AB on Fig. 2. 
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areas of low relief appear to display more 
uniform reflectivity. 

The profile shown in Fig. lb is typical 
of those obtained for its band of lati- 
tudes. This region appears to be a mo- 
notonous, gently rolling plain, at least at 
a scale of 100 km. At the other extreme is 
the area illustrated in Figs. la and 2, se- 
lected because it exhibits by far the 
greatest relief over horizontal distances 
on the order of hundreds of kilometers 
that has been seen so far by the Pioneer 
Venus radar mapper. The contours in 
Fig. 2 define a series of hills and depres- 
sions elongated in the east-west direc- 
tion. The overall pattern of hills and de- 
pressions is complex, but the depres- 
sions define a trough trending about 10? 
north of east, with at least one abrupt, en 
echelon offset. The maximum slope over 
a distance on the order of 100 km is 
about 5?. The two elongated hills in the 
east-central part of the map (the crests 
are outlined by 9- and 8-km contours) 
have flank slopes of up to 2.5?. In view of 
the dimensions of the depressions, flank 
slopes averaging several degrees over 
scores of kilometers are rather steep. 

A crucial question must be the reality 
of the shapes depicted in Fig. 2. There is 
much subjective judgment involved in 
contouring an array of points, and it may 
be possible to construct an alternative 
map with depressions that are more 
nearly circular. In effect, this alternative 
requires treating each low-elevation 
point as occurring within a separate cra- 
ter. If this is done, almost all the craters 
would lie in east-west chains across the 
center of the area, and would have diam- 
eters varying from 50 to more than 120 
km. The east-west grain apparent in 
most of the contour lines not enclosing 
craters and hills strengthens the ob- 
served pattern and supports the shapes 
shown in Fig. 2. 

Obviously it is hazardous to attempt a 
genetic explanation in the absence of 

supporting data, but it is difficult to avoid 
the impression that the topography 
shown in Fig. 2 is the result of tectonic 
activity. No purely erosional process 
seems capable of producing the relief 
seen here. If the geometry is that of a 
complex chain of nearly round depres- 
sions, rather than that of elongated de- 
pressions as shown in Fig. 2, then it is 
conceivable that we are seeing a chain of 
secondary craters associated with a very 
large primary basin. But the pattern giv- 
en in Fig. 2 requires less forcing of the 
data than the round-depression alterna- 
tive. Furthermore, the en echelon offset, 
the placement of the trough within a re- 
gion that appears elevated above its gen- 
eral surroundings, and the general di- 
mensions of the feature all seem more 
consistent with a rifting origin. Thus, we 
believe that the trough is most likely the 
result of large-scale faulting. If so, the 
feature may continue far enough to the 
east to eventually fall within the cov- 
erage of Earth-based imagery. A few im- 
ages of this feature should resolve its ori- 
gin. 

The limited global coverage and pre- 
liminary state of reduction of the data in 
hand preclude any precise measurement 
of planetary oblateness. It is clear, how- 
ever, that the oblateness is much smaller 
than for either Earth or Mars. On the 
basis of the data taken over the first 13 
orbits, the oblateness appears to be no 
more than 1/2500 and is perhaps much 
less. 

Reduction of the imaging data is more 
complicated than in the case of altime- 
try, since many more corrections are 
necessary. Functioning of the radar map- 
per was largely nominal for orbits 3 
through 13 (data from the first 2 orbits 
were lost to operational errors). Begin- 
ning with orbit 14 (18 December 1978), 
however, an instrument failure voided 
the usefulness of most radar data taken 
on that orbit. Instrument operation re- 

mained faulty until orbit 47 (20 January 
1979) when recovery was noted. It is be- 
lieved that the source of the difficulty is 
now understood, and that future opera- 
tion will be nominal. 
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