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Infrared Image of Venus at the Time 

of Pioneer Venus Probe Encounter 

Abstract. An image of the infrared emission from the Earth-facing hemisphere of 
Venus was obtained at the time the Pioneer Venus probes penetrated the atmo- 
sphere. The thermal structure of the atmosphere at the 85-millibar level included 
regions of rapidly varying polar features, a solar-related postdawn warm area, and a 
nonsolar-fixed nighttime warm area. The probes succeeded in entering each of these 
three thermal regions. 
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the entry of the Pioneer Venus probes. 
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metric detector viewing through a filter 
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Fig. 1. Isophotal map of infrared emission from Venus at the time of probe entry with limb 
darkening removed. The radiance contours are equally spaced, by 2 percent of the average 
central intensity. Entry sites of small probes are indicated by circles, that of the large probe by a 
triangle. The dawn terminator, equator, and orientation of the Venus pole are shown, as are 
celestial north and east. The borders of the map enclosed a region measuring 64 by 64 arc 
seconds; the small circle in the lower right is the size of the detector aperture. 
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band, whose weighting function peaks at 
the 85-mbar level, approximately 67 km 

The thermal features of Venus have 
been observed sporadically since 1964 

:?i::ii:::,i,:i:Fig.,,:::::: (1-3); the aim of the present program is a 
owest infared radiance, white the highest. Thesystematic characterization of the major 
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Fig. 2. Gray-tone representation of the radiance map shown in Fig. 1. Black represents the angle: this procedure removes the domi- 
lowest infrared radiance, white the highest. The probe entry sites and orientation of the Venus nant radially symmetrical features. 
pole are shown with the same conventions as in Fig. I. The added image obtained at the time 

of probe entry (5) is presented as a con- 
tour map in Fig. I and a gray-tone image 
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tral intensity over the central 25 percent 
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Two intense polar regions of low emis- 
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Fig. 3. Mercator projection of the infrared emission into a frame fixed with respect to the sun. gion near the south pole was relatively 
Contours are spaced at intervals of 2 percent of the average central intensity; contour A repre- g n 
sents the lowest infrared radiance and M the highest. Small probe entry sites are indicated by symmetrical on 9 Decemer but the 
circles, the large probe site by a triangle. north region showed a plume of very low 
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emission, sometimes described as a cold 
ring, extending partly around a plateau 
of higher emission near the pole itself. 
This is the first observation of a low- 
emission region around a warmer plateau 
near the north pole, probably because of 
this year's favorable viewing geometry 
(6), although such features have pre- 
viously been seen near the south pole (2, 
4). 

The region of highest thermal emission 
on this day was on the nightside of the 
planet, at roughly 45?N. This sharply 
contrasts with the observations we made 
in April and May 1977 (4) at an identical 
solar phase angle, in which the region of 
intense emission was consistently on the 
sunlit side of the terminator. This strik- 
ing change of appearance indicates that 
at least some of the major thermal fea- 
tures are not solar-fixed. In addition, 
since the features observed in 1977 did 
persist over the 26-day observation peri- 
od, the time scale for the observed atmo- 
spheric thermal change must be on the 
order of several months, but less than 
the 19 months separating the observa- 
tions. A solar component is observable, 
however, since postdawn infrared 
brightening begins at roughly 75? solar 
longitude in both data sets (although the 
warmest area shifted from north of the 
equator in May 1977 to somewhat south 
of the equator on 9 December 1978). 

The north probe entered near the 
boundary of the subpolar cold ring and 
the warmer polar plateau, well within the 
region of the polar thermal feature char- 
acterized by rapid daily changes (4). The 
site of entry of the night probe was in one 
of the two well-developed warm regions 
near the antisolar meridian (the cooler of 
the two). The day probe entered near the 
boundary between the cold south polar 
region and the region of postdawn bright- 
ening, but definitely outside the cold po- 
lar zone. The large probe entered a 
stable area in the region of postdawn 
brightening, which extended roughly ho- 
mogeneously from 30?N to 30?S latitude. 
The probes entered at least three distinct 
types of thermal provinces: the cold 
ring-warm plateau zone near the north 
pole, a region of nighttime thermal 
brightening, and the postdawn warming 
area. These areas were broadly repre- 
sentative of nearly all the types of ther- 
mal features observed on the hemisphere 
visible from Earth at the time of encoun- 
ter, and should provide a good character- 
ization of its major dynamical regions. 
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Fig. 1. Pressure data plotted as a function of 
ground received time. About one-tenth of the 
points are plotted. The slope discontinuity on 
the sounder marks the time of parachute re- 
lease. The more rapid descent of the sounder 
after it began free fall caused it to land earlier 
than the three small probes. Its time axis has 
therefore been displaced. All landed between 
19:43 and 19:56 GMT. 
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December 1978 (Julian date 2443852.29): the 
subearth Venus latitude was 0.6?S; subearth Ve- 
nus longitude, 2.7?; subearth heliocentric longi- 
tude, 123.1?. 

6. The subearth Venus latitude of 0.6?S was small- 
er than that during any previous observations 
and allowed nearly identical viewing geometries 
for both poles. 
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cloud deck and above it to an altitude of 
at least 120 km (1). Below the clouds, the 
instruments were temperature and pres- 
sure sensors and accelerometers; above 
the clouds, accelerometers alone were 
used to define the structure from probe 
deceleration. A goal of the experiment 
was to measure the structure below the 
clouds with sufficient accuracy to define 
the thermal contrast available to drive 
the circulation. 

In this report we present preliminary 
results on lower-atmosphere structure, 
thermal contrasts, and atmospheric sta- 
bility. We also give altitudes derived 
from the data and the temperature profile 
from 67 to 105 km derived from the first 
analysis of the entry data from the north 
probe. 

In Fig. 1, pressure measurements 
made during the descent of the four 
probes are plotted against the time at 
which the data were received on Earth. 
Measurements have not yet been fully 
corrected. The circles and squares in 
Fig. 1 represent two independent sensor 
sets on each probe, which generally 
agree within about 1 percent. The data 
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Structure of the Atmosphere of Venus up to 110 Kilometers: 

Preliminary Results from the Four Pioneer Venus Entry Probes 

Abstract. The four Pioneer Venus entry probes transmitted data of good quality on 
the structure of the atmosphere below the clouds. Contrast of the structure below an 
altitude of 50 kilometers at four widely separated locations was found to be no more 
than a few degrees Kelvin, with slightly warmer temperatures at 30? south latitude 
than at 5? or 60? north. The atmosphere was stably stratified above 15 or 20 kilome- 
ters, indicating that the near-adiabatic state is maintained by the general circulation. 
The profiles move from near-adiabatic toward radiative equilibrium at altitudes 
above 40 kilometers. There appears to be a region of vertical convection above the 
dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 
360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) 
and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. 
This is where the 4-day wind is believed to occur. The temperature wave may be 
related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photo- 

Structure of the Atmosphere of Venus up to 110 Kilometers: 

Preliminary Results from the Four Pioneer Venus Entry Probes 

Abstract. The four Pioneer Venus entry probes transmitted data of good quality on 
the structure of the atmosphere below the clouds. Contrast of the structure below an 
altitude of 50 kilometers at four widely separated locations was found to be no more 
than a few degrees Kelvin, with slightly warmer temperatures at 30? south latitude 
than at 5? or 60? north. The atmosphere was stably stratified above 15 or 20 kilome- 
ters, indicating that the near-adiabatic state is maintained by the general circulation. 
The profiles move from near-adiabatic toward radiative equilibrium at altitudes 
above 40 kilometers. There appears to be a region of vertical convection above the 
dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 
360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) 
and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. 
This is where the 4-day wind is believed to occur. The temperature wave may be 
related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photo- 

787 787 


