
important factor in its cycling. However, 
neither stable cesium in a montane lake 
which undergoes reduced oxygen con- 
centrations (14) nor 137Cs and stable ce- 
sium in a hypereutrophic lake which un- 
dergoes intensely anoxic, hypolimnetic 
conditions (15) show indications of a sea- 
sonal cycle. Cycling of 137Cs coincident 
with thermal stratification has been re- 
ported in Lake Michigan (16). However, 
this cycling is apparently controlled by 
particulate transport and resolution in 
the water column well above the sedi- 
ments. Hypolimnetic water in Lake 
Michigan does not become anaerobic 
over the vast bulk of the lake area, and 
137Cs concentrations are constant 
throughout the year in the deeper wa- 
ters. This cycling observed in Lake 
Michigan and the mechanism controlling 
it are quite different from the case of in- 
tense anaerobiosis encountered during 
thermal stratification in Par Pond. More- 
over, the cesium source terms in all the 
examples except Par Pond were either 
tracer material or fallout and weathering 
products rather than a nuclear fuel ele- 
ment. Because of the apparent anoma- 
lous behavior of 137Cs in Par Pond and its 
relevance to the nuclear fuel cycle, fur- 
ther studies are required to define the 
cause of the '37Cs cycling and the avail- 
ability of this material to the biota of the 
system. 
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HNO3, and the 137Cs was precipitated with KF. 
The '37Cs concentration was then determined on 
a gas-flow proportional counter. 

10. Water samples (25 to 50 liters each) were col- 
lected by means of a 10-liter polyvinyl chloride 
Van Dorn sampler bottle fastened to the hydro- 
graphic sampling wire horizontally so that the 
sample would represent a narrow lens of water 
at the sampling depth. The water samples were 
centrifuged through an eight tube, KSB continu- 
ous-flow centrifuge (Sorvall, SS-3) at 200 ml/min 
and 27,000g. Known volumes of the centrifugate 
were passed through ion-exchange columns. To 
determine 137Cs, the radioactivity of the resins 
was counted with a Nal well crystal (22.9 by 
22.9 cm). 

11. The 50-liter samples were collected by means of 
the specially adapted Van Dorn sampler, filtered 
through 0.45-,Jm membrane filters (Millipore), 
and spiked with HCI (final pH - 2) and 5 mg of 
stable cesium to retard adsorption losses on con- 
tainer walls. The sample was evaporated in glass 
to a final volume of 500 ml; the 137Cs concentra- 
tion was determined by gamma-counting of the 
entire sample on a low-background Nal detector 
(7.6 by 7.6 cm). 

12. Par Pond is a surface discharge reservoir with an 
average thermocline depth of -~ 6 m. The mini- 
mum replacement time of the reservoir calcu- 
lated from rainfall discharge data and Savannah 
River makeup water volume is 8 to 10 months. 
Since this time period is long compared to the 
time of stratification, it would be expected that 
most of the 137Cs in the reservoir would remain 
in the system rather than be flushed over the 
dam. 

13. Further evidence of the retention of 137Cs in the 
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Biological Control of Dissolved Aluminum 
in Seawater: Experimental Evidence 

Abstract. Experimental evidence supports the hypothesis that the concentration 
and distribution of dissolved aluminum in ocean water are controlled by biological 
activity in the surface waters. The growth of the diatom Skeletonema costatum in 
artificial seawater media spiked with aluminum reduced the aluminum concentration 
to that actually found in surface open ocean waters (about 0.5 micrograms per liter). 
Furthermore, aluminum had a catalytic and limiting effect on the growth of the dia- 
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The concentration of dissolved Al in 
surface open ocean waters is less than 1 
,g/liter (1). The mechanisms that main- 
tain this low concentration are poorly 
known. In the past it has been assumed 
that the seawater Al concentration was 
the result of thermodynamic equilibria 
between the water and various alumino- 
silicate minerals (2). Several investiga- 
tors attempted to reproduce these ob- 
served seawater Al concentrations either 
by the dissolution or precipitation of alu- 
minosilicate minerals in aqueous solu- 
tions or by the adsorption of dissolved Al 
onto various types of suspended parti- 
cles (3). However, in these experiments 
equilibrium concentrations of dissolved 
Al below 1 ,tg/liter were not obtained. 

Recently, it was suggested that the dis- 
solved Al concentration in the oceans is 
controlled by biological activity. Mac- 
kenzie et al. (4) observed a depletion of 
dissolved Al in the photic zone of the 
Mediterranean Sea parallel to an ob- 
served depletion in dissolved silica. This 
covariance was thought to be due to bio- 
logical uptake of Al and Si by siliceous 

toms. 
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organisms. They concluded that "the 
silicon and aluminum cycles in the 
oceans are linked through the activity of 
diatoms" (4, p. 680). Van Bennekom and 
van der Gaast (5) identified authigenic 
smectites regularly distributed in the 
frustules of diatoms collected at sea. Le- 
win (6) suggested that Al and Fe are nec- 
essary to the formation of diatom frus- 
tules because the adsorption of these cat- 
ions onto the silica frustules renders 
them resistant to dissolution. 

To verify the hypothesis that dissolved 
Al concentrations in surface open ocean 
waters can be related to the activity of 
diatoms, I carried out culture experi- 
ments using the diatom Skeletonema 
costatum, a common neritic species, 
grown in an artificial seawater culture 
medium spiked with dissolved Al. The 
Al concentration in the medium was 
monitored during the development of the 
culture; even in a medium to which 25 
,tg/liter had been added, the dissolved Al 
concentration was reduced to less than 1 
,tg/liter during the growth of the diatoms. 

The basic culture medium used in the 
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Fig. 2. Plot of the maximum amount of SiO2 
removed from the culture media owing to the 
growth of the diatoms as a function of the 
initial Al concentration. 

(Fig. 1). These observations suggest that 
Al had a catalytic effect on the develop- 
ment of the diatom cultures and, more 
surprisingly, that it limited the growth of 
the diatom cultures. These results cor- 
roborate those of Menzel et al. (11) who 
observed that the addition of Al to Sar- 
gasso Sea water has a catalytic effect on 
the productivity of the organisms in the 
water, and particularly that of the dia- 
toms, if sufficient dissolved SiO2 was 
prese,nt. They did not observe, however, 
a larger final cell density in cultures with 
initial high concentrations of Al as com- 
pared to those with initial low concentra- 
tions of Al. A linear extrapolation (Fig. 
2) to an initial Al concentration of 0 ,ug/ 
liter implies a removal of SiO2, and 
therefore a growth of the diatoms at an 
initial Al concentration of 0 ,tg/liter. This 
observation suggests that, although Al 
has a catalytic effect on the growth of 
diatom cultures and even limits their 
growth, Al is not indispensable to the 
growth of diatoms. 
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semi-diurnal lunar tide (M2), which is ap- 
proximately 12.4 hours, yields the propa- 
gation speed of the wave. 

For an idealized stratification where 
the ocean is composed of two homoge- 
neous layers, the boundary between 
them being a sharp pycnocline, the wave 
propagation speed of an interfacial inter- 
nal wave is 
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Heat Storage in the Oceanic Upper Mixed Layer 
Inferred from Landsat Data 

Abstract. From the spacing of internal wave packets generated by tidal flow over 
topography, one can determine their propagation speed. The propagation speed de- 
pends upon the density anomaly and depth of the upper mixed layer. Attributing the 
density anomaly to temperature only, one can calculate the heat storage in the upper 
oceanic layer. On the basis of Landsat images of the New England continental shelf, 
the heat storage calculated from satellite data has been compared with available in 
situ observations. The data show that the method may have merit and is deserving of 
further refinement. 
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The amount of heat stored in the upper 
ocean during the warm season is gov- 
erned by the balance between incoming 
solar radiation and exchanges of heat 
with the atmosphere and the water layers 
below the upper heated layer. Horizontal 
advection in both the atmosphere and 
the ocean also affects the state of the up- 
per warm layer in the ocean at a geo- 
graphical location. The amount of heat 
stored in the upper warm layer and the 
depth of the layer affect biological pro- 
ductivity, and the heat available for di- 
rect participation in the formation of at- 
mospheric disturbances affects weather 
development. In addition, the heat 
stored in the upper ocean during the 
warm season may be a useful climatolog- 
ical variable. The continuous observa- 
tion of the upper warm layer over a large 
area is an expensive and difficult effort, 
since observations are affected by the in- 
ternal tides, which must then be ob- 
served. 

We have found a method for estimat- 
ing the heat stored in the seasonal upper 
warm layer, using information available 
in Landsat images. Tidal flow over to- 
pography produces internal wave pack- 
ets (1, 2). These internal waves cause 
horizontal convergences and diver- 
gences in the velocity field of the sea sur- 
face, which, in the presence of capillary 
waves or short gravity waves, will 
stretch and compress these surface 
waves, creating bands of variation of sur- 
face roughness above the internal waves 
(3). Internal waves in the upper layers of 
the ocean can therefore generate surface 
signs that are discernible in satellite im- 
ages (4). 
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Figure 1 shows a contrast-enhanced 
Landsat image from the region of the 
northeastern American continental shelf. 
Two wave packets are visible, apparent- 
ly being emitted from the same location 
at successive tidal periods. The spacing 
between successive wave packets is the 
distance traveled per tidal period. Divid- 
ing the distance by the period of the 
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where c is the propagation speed, g is the 
acceleration of gravity, Ap is the density 
difference between the upper and the 
lower homogeneous layers, P2 is the den- 
sity of the lower layer, and h is the depth 
of the upper layer. Equation 1 is based 
on the assumption that the wavelength is 
much longer than h and that the lower 
layer is much deeper than the upper lay- 
er. Typically, the wavelengths seen in 
satellite images range from 400 m to 2 
km, h is typically 10 m, and the total 
depth varies from 20 to 200 m. 

The density anomaly, Ap = P2 - PI, is 
due to temperature and salinity dif- 
ferences (AT and AS) in the two layers, 
according to the approximate relation 
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Fig. 1 (left). Enlargement of Landsat image / 
1364-14550 taken on 23 July 1973. We can see 
two wave packets north of Cape Ann; the 
waves propagate shoreward. Fig. 2 (top 
right). Frequency distribution of distance be- 2 - 

tween the wave packets corrected by the mul- l 3 

tiples of a fundamental minimum distance (78 Q sat (kcal/cm2) 

observations). Fig. 3 (bottom right). Comparison of heat storage computed from satellite 
pictures (Qsat) and of heat storage computed from in situ measurements (Qins). For perfect 
agreement, the points should lie on the line shown. 
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