
(17). The resulting instrument, however, 
appears to have broad application in the 
measurement of small motions since it 
uses a noncontact, optical method hav- 
ing high sensitivity, good spatial resolu- 
tion, broad bandwidth, wide dynamic 
range, and high tolerance of background 
displacements of the target surface (18). 
Furthermore, in contrast to many vibra- 
tion detectors, it is relatively simple to 
construct, portable, easy to operate, and 
inexpensive. In order to adapt the in- 
strument to other uses, only slight 
changes (18) are required to maximize 
sensitivity, bandwidth, spatial resolu- 
tion, or background movement rejection 
at the expense of one or more of the oth- 
ers. 
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Synaptic Phosphoproteins: Specific Changes After 

Repetitive Stimulation of the Hippocampal Slice 

Abstract. Repetitive stimulation (100 pulses per second for I second) of the Schaf- 
fer collateral-commissural system of the rat hippocampus induces long-term poten- 
tiation of synaptic strength and produces significant changes in the subsequent en- 
dogenous phosphorylation of a 40,000-dalton protein from synaptic plasma mem- 
branes. This effect is not observed after stimulation in calcium-deficient media or 
after simulation at the rate of one pulse per second for 100 seconds. These findings 
provide evidence that repetitive synaptic activation can alter the phosphorylation 
machinery of the synaptic region and suggest a biochemical process which may be 
involved in the production of neuronal plasticity. 
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Historically, synaptic transmission 
has been analyzed in terms of biochemi- 
cal and physiological events that take 
milliseconds to transpire. Recently it has 
become evident that, under some cir- 

cumstances, the efficacy of the transmis- 
sion process can be modified for periods 
ranging from minutes to months (1). 
There is evidence that phosphoproteins 
may be involved in such synaptic events. 
Protein phosphorylation can occur with- 
in seconds and is known to persist for at 
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least minutes (2); this alone makes the 
process attractive as a candidate for the 
biochemical substrate of relatively long- 
lasting changes in synaptic efficacy. Fur- 
thermore, a number of studies have pro- 
vided evidence linking the phosphoryla- 
tion machinery to synaptic events. Pro- 
tein kinases, protein phosphatases, and 
their substrates have all been found in 
fractions enriched in synaptic plasma 
membranes (SPM's) (3). Other studies 
have shown that electrophysiological 
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and pharmacological manipulations of 
several putative neurotransmitter sys- 
tems influence the concentrations of cy- 
clic nucleotides in neural tissue (4); and 
Johnson et al. (5) and Ueda et al. (6), 
using quantitative gel autoradiogra- 
phy, demonstrated that the endogenous 
phosphorylation of at least two SPM pro- 
teins was enhanced in the presence of 
adenosine 3',5'-monophosphate (cyclic 
AMP). However, it has not been shown 
that changes in specific phosphoproteins 
accompany activation of a functional 
synaptic system. The present experi- 
ments were intended to provide evidence 
pertinent to this issue. Specifically, we 
have assayed the endogenous phospho- 
rylation of proteins after repetitive stim- 
ulation of the hippocampal slice under 
conditions that produce semipermanent 
changes in synaptic efficacy. 

Slices of rat hippocampus were pre- 
pared as previously described (7). About 
1 hour after preparation, stimulation elec- 
trodes were placed in the stratum radi- 
atum near the CA1-CA2 border in a posi- 
tion where they would activate the mas- 
sive Schaffer and commissural afferents 
to the apical dendrites of the pyramidal 
cells (8). Pretetanus voltages (usually 5 
to 20 V) were selected such that a single 
pulse would evoke a 1- to 2-mV "popu- 

Table 1. Stimulation-dependent alterations in 
phosphorylation of specific SPM components. 
These data summarize the effects of stimula- 
tion at a rate of 100 pulses per second for 1 
second in 20 experiments. The bands listed in- 
clude only those which demonstrated detect- 
able incorporation of label in ten or more of 
the 20 experiments. Quantification of the in- 
corporation of label into specific bands was 
based on densitometric scans of autoradio- 
graphs. (These values were in good agreement 
with radioactivity profiles obtained from scin- 
tillation counts made of 1-mm slices of the 
gels.) Ratios between experimental and con- 
trol values were determined for all detectable 
bands after normalization to control on the 
basis of total incorporation (as reflected by 
the densitometric values.) Percentage change 
is the average ratio for the 20 experiments. N, 
number of instances in which the stimulated 
value was greater (+) or less (-) than control. 

Molecular Percentage N 
weight change 

(mean) + - 

112,000 +3.6 10 4 
85,000 -1.8 6 6 
80,000 +7.9 12 5 
68,000 +3.4 11 9 
62,000 -0.9 5 8 
53,000 +8.6 16 4* 
50,000 -0.7 10 10 
45,000 -3.2 4 7 
40,000 -25.9 1 19t 
33,000 +3.7 6 6 
27,000 +16.0 15 2t 

*P - .012. tP < .001. tP < .002; two-tailed 
binomial test. 
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Table 2. Low-frequency stimulation does not 
produce detectable effects on endogenous 
phosphorylation. Twelve experiments were 
performed as described in Table 1, except that 
stimulation was administered at the rate of one 
pulse per second for 100 seconds. Only the 
data from the 53K, 40K, and 27K bands are 
presented. 
ferences. 

There were no significant dif- 

Molecular Percentage N Molecular 
change weight (mean) + 

53,000 -4.6 3 9 
40,000 +4.0 8 4 
27,000 -4.9 5 7 

lation spike" in the cell layer. The path- 
way was then stimulated with biphasic 
constant-voltage pulses either for 1 sec- 
ond at 100 pulses per second or for 100 
seconds at one pulse per second. Repetitive 
stimulation of this system at 100 pulses 
per second reliably produces a 200 to 
1000 percent increase in the population 
spike and a 10 to 50 percent increase in 
the extracellular excitatory postsynaptic 
potentials recorded from the zone of 
Schaffer termination, and these changes 
persist indefinitely (9). This effect, long- 
term potentiation, is not obtained af- 
ter stimulation at one pulse per second 
(10). 

Two minutes after the cessation of 
high-frequency stimulation, the stimulat- 
ed slice and an unstimulated paired con- 
trol were transferred to separate solu- 
tions of 0.32M sucrose at 0? to 4?C. The 
tissue was maintained at this temper- 
ature throughout the isolation proce- 
dure. Similarly treated slices were 
pooled, and SPM fractions were pre- 
pared by a slight modification of pre- 
vious methods (11). The SPM fractions 
were assayed for endogenous phospho- 
rylation (12) and samples were then run 
on the exponential polyacrylamide gel 
system of Kelly and Luttges (13). The 
gels were stained for protein with Coo- 
massie blue, dried, and exposed to Ko- 
dak RP Royal X-Omat film for 3 to 5 
days. Autoradiographs were scanned on 
a Beckman 25 spectrophotometer. 

Because changes produced in the 
phosphorylation machinery by treat- 
ments in vivo are reflected in a sub- 
sequent assay of endogenous phospho- 
rylation (14, 15), we hypothesized that 
if repetitive stimulation of the hippo- 
campus induces persistent changes in 
phosphorylation, then we might be able 
to detect these changes with a sub- 
sequent "post hoc" assay of endogenous 
phosphorylation. The results of a typical 
experiment (Fig. 1) indicate that repeti- 
tive, high-frequency stimulation does 
produce changes in the endogenous 

phosphorylation of specific proteins. It 
was evident from visual inspection of the 
autoradiograph that a band of protein 
(16) with an apparent molecular weight 
of approximately 40,000 (40K) incorpo- 
rated less label in the stimulated slices 
than in the paired controls. Detailed 
analysis of the protein bands from 20 
separate experiments revealed a large, 
stimulation-dependent decrease in the 
40K band in 19 of 20 experiments (Table 
1). This effect could be reliably observed 
by visual inspection of the autoradio- 
graphs. Smaller and less consistent in- 
creases were detected in bands of pro- 
tein with minimum molecular weights of 
27K and 53K (Table 1). 

We next determined whether synaptic 
activation was required for these effects. 
Accordingly, we repeated the experi- 
ment using slices that were incubated 
in media from which the calcium had 
been omitted. The presynaptic volley is 
largely unaffected by this condition, but 
the postsynaptic response is completely 
eliminated (10), presumably because of 
the absence of the depolarization-trig- 
gered calcium influx required for trans- 
mitter release. In seven separate experi- 
ments we observed no evidence of a de- 
crease in the phosphorylation of the 40K 
protein; in fact, there appeared to be a 
tendency for stimulation to increase the 

(a) (b) 
+ C + C 

Molecular 
weight 

*53,000----'' 

- M e 27,00 0--i 

Fig. 1. Polyacrylamide gel depicting the ef- 
fects of repetitive stimulation on phosphoryla- 
tion of specific SPM components. Symbols: 
+, stimulated sample; C, control sample. (a) 
The protein staining pattern obtained with 
Coomassie blue in the 7.5 to 20 percent gel. 
(b) Autoradiograph showing the bands that in- 
corporated label. The molecular weight esti- 
mations were based on comparisons with the 
mobilities of standards of known molecular 
weight. Molecular weight values shown in- 
dicate bands in which significant stimulation- 
dependent changes in phosphorylation were 
observed (see Table 1). 
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incorporation of radioactivity. No signif- 
icant changes were observed in any of 
the other protein bands that we were 
able to analyze. Finally, we determined 
whether the change in the 40K protein 
was found only after repetitive high-fre- 
quency stimulation or instead was a gen- 
eral correlate of synaptic transmission. 
Accordingly, we performed 12 additional 
experiments in normal medium with 100 
pulses delivered at a rate of 1 pulse per 
second, and subsequently assayed for 
endogenous phosphorylation; as shown 
in Table 2, such stimulation had no mea- 
surable effects on the 40K material. 

Thus, high-frequency stimulation de- 
creased the endogenous phosphorylation 
of a protein band (minimum molecular 
weight of 40,000), but low-frequency 
stimulation or stimulation in the absence 
of synaptic transmission had no such ef- 
fect. The decrease after high-frequency 
stimulation suggests a number of possi- 
bilities about the mechanism of the stim- 
ulation-dependent change. Changes in 
cyclic AMP are probably not involved 
since neither this nucleotide nor the ki- 
nase it activates (17) have any significant 
effect on the endogenous phosphoryla- 
tion of the 40K protein. The short time 

period of the assay (20 seconds) and the 
fact that the difference can be detected in 
a 5-second assay (data not shown) argue 
against the action of phosphatases be- 
cause these enzymes generally display 
detectable activity only with significant- 
ly longer incubation periods (2). Thus it 
seems likely that stimulation produces 
either an increase in the phosphorylation 
of the protein, hence fewer sites would 
be available for labeled phosphate in the 

subsequent post hoc assay, or a decrease 
in the activity of a specific kinase, and 
therefore less labeled phosphate is trans- 
ferred in the post hoc assay. Whatever 
the mechanism, these data indicate that 
repetitive stimulation of the type which 
induces long-lasting changes in synaptic 
efficiency also changes the endogenous 
phosphorylation of specific synaptic mem- 
brane phosphoproteins. Beyond provid- 
ing a biochemical correlate of long-term 
potentiation, these findings provide evi- 
dence that the transmission process, un- 
der some circumstances, alters specific 
phosphoproteins of synaptic regions. 

Although we have not identified the 
factors responsible for the stimulation- 
dependent change in the phosphoryla- 
tion of the 40K protein, the dependence 
on calcium suggests that (i) the release of 
transmitter is the triggering event, or (ii) 
the influx of calcium associated with 
transmission activates a kinase. With re- 

spect to the latter idea, calcium-sensitive 
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kinases have been identified in brain and 
other tissue (18), and we have found (17) 
that addition of one of these, phosphory- 
lase b kinase (E.C. 2.7.1.38), to our as- 
say results in a highly selective phospho- 
rylation of the 40K band. This suggests 
that changes in intracellular calcium as- 
sociated with repetitive stimulation may 
alter the 40K protein by way of activa- 
tion of phosphorylase b kinase. 

The appearance of the 40K effect after 
stimulation at 100 pulses per second, but 
not 1 pulse per second, suggests that this 
phosphorylation change may somehow 
be linked to the production of long-term 
potentiation. If so, it would represent an 
important insight into the biochemical 
mechanisms available to the brain to 
achieve lasting changes in synaptic 
strength, and as such may have implica- 
tions for the understanding of the func- 
tional plasticity (for example, learning) 
which is so characteristic of the mamma- 
lian central nervous system. 
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