
trouble to reach some obscure corner of 
London" in order to hear a rock group 
called "The Citations." 

Some critics feel that this intense pre- 
occupation with the stuff of citations 
belies a drive for the corporate dollar, of 
which Garfield has quite a few at stake. 
As one reviewer of his Essays put it, 
"Garfield promotes his products; Gar- 
field announces his plans for editorial 
change; Garfield evaluates his products 
for the information community; Garfield 
introduces his associates and vouches 
for their character and integrity; Garfield 
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acknowledges the adulation his pub- 
lications have received among users. 
Garfield's gross is his intense pre- 
occupation with his corporate welfare. It 
is never so labeled, but no label is 
needed." 

But it is, after all, Garfield's corporate 
self-interest, coupled with his subtle in- 
sights into the information needs of the 
scientific community, that has put such 
revolutionary tools into the hands of sci- 
entists around the globe. And, as Sci- 
ence found in Philadelphia, the craving 
for corporate growth has not been at the 
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expense of a certain style. The company's 
fleet of chauffeur-driven cars, for example, 
includes a Cadillac, a Lincoln, a Jaguar, 
and, until 2 years ago, at which point 
Garfield gave it to his son, a Checker. 

-WILLIAM J. BROAD 
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Erratum: In the report "Children absorb tris-BP 
flame retardant from sleepwear: urine contains the 
mutagenic metabolite, 2-3-dibromopropanol" by A. 
Blum et al. (15 September 1978, p. 1020), the unit of 
measure for dibromopropanol in Table 1, column 3, 
should have been nanograms, rather than milli- 
grams, per milliliter. In reference 28, sentence 2, the 
word "sells" should have been "formerly sold." We 
apologize for this error to Apex Chemical Company, 
Inc., which discontinued sale of Fyrol flame retar- 
dant, for use in children's sleepwear. 
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Computer Science: Surprisingly Fast Algorithms 
Mathematicians have traditionally 

been more concerned with showing that 
solutions to problems exist than with de- 
termining what the solutions are. The ad- 
vent of the computer changed this situa- 
tion by making it possible to at least 
think about computing solutions to com- 
plex problems. But it has become in- 
creasingly clear that there is a big dif- 
ference between a solution that can be 
computed in theory and one that can be 
computed in practice. Often the straight- 
forward way of solving a problem in- 
volves so many operations that, even for 
moderately sized problems, the solution 
is effectively noncomputable. 

From this concern with finding com- 
putable solutions to problems came the 
idea of developing "fast" algorithms that 
require fewer steps than those currently 
in use. The payoffs from fast algorithms 
can be enormous. For example, the de- 
velopment of the fast Fourier transform 
(FFT) completely changed whole areas 
of science, such as crystallography, by 
making possible computations that were 
previously infeasible. Similarly, entire 
issues of engineering journals have been 
devoted to applications of the FFT. 

Recently, computer scientists have 
discovered new fast algorithms for ma- 
nipulating polynomials and power series. 
(A polynomial is an expression of the 
form ao + alx + a2x2 + a3x3 + ... + al,?x, 
where the a's are constants. The integer 
n is the "degree" of the polynomial. 
A power series is a polynomial extended 
to include an infinite number of terms.) 
Since operations on power series are so 
common, the new algorithms could be of 
great practical importance. 

The new algorithms are also inter- 
esting from a mathematical point of 
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view. According to Alan Borodin of the 
University of Toronto, they are com- 
pletely nonintuitive and so are "very, 
very surprising." For example, one re- 
sult is that any power of a polynomial 
can be computed as quickly as squaring 
the polynomial. 

Discoveries of these fast algorithms 
began in 1972, when M. Sieveking of the 
University of Zurich found a new, rapid 
way to compute the first N terms of the 
reciprocal of a power series. Then H. T. 
Kung of Carnegie-Mellon University no- 
ticed that Sieveking's method is actually 
a well-known procedure called Newton 
iteration. Shortly after Kung made this 
observation, John Lipson of the Univer- 
sity of Toronto and, independently, Kung 
and Joseph Traub of Carnegie-Mellon 
determined that Newton iteration can be 
applied to solve power series equations, 
thus leading to a number of fast al- 
gorithms. 

The idea behind Newton iteration is to 
approximate the power series solution to 
a particular equation with a polynomial 
consisting of the initial terms of the pow- 
er series that is the actual solution. At 
each step of the Newton iteration, more 
terms are added to the polynomial ap- 
proximation. Traub explains that when 
Newton iteration is applied to power se- 
ries equations, the iteration always con- 
verges and the number of correct terms 
at least doubles at each step. 

Using Newton iteration, Kung showed 
that the first N terms of the reciprocal of 
a power series can be computed as 
quickly as multiplying two Nth degree 
polynomials. The fastest known method 
for polynomial multiplication is the FFT, 
which requires N log N operations. 

Dividing a power series by a power se- 
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ries can be thought of as a multiplication 
problem in which one power series is 
multiplied by the reciprocal of another. 
When division is represented in this way, 
Kung's result about reciprocals leads to 
the conclusion that the first N terms of 
the quotient of two power series can be 
computed in no more than N log N steps. 
Thus division is no harder than multipli- 
cation. 

Kung and Traub recently generalized 
the result about power series to apply to 
all algebraic functions, including such 
complicated functions as the reciprocal 
of a power series. These algebraic func- 
tions, which arise in many areas of math- 
ematics, are the solutions of polynomial 
equations in which the coefficients of the 
variables are themselves polynomials. 
The textbook method of computing alge- 
braic functions is by comparison of coef- 
ficients-a method that can be extremely 
slow. For example, if the algebraic func- 
tion satisfies a polynomial of degree n, 
computation of the first N terms of the 
polynomial by comparison of coeffi- 
cients requires as many as N'" opera- 
tions. With new algorithms, the first N 
terms of any algebraic function can be 
computed with the same number of oper- 
ations that are needed to multiply two 
Nth degree polynomials, or N log N. 
They established this result by showing 
that the first N terms of any "regular" 
algebraic function can be computed rap- 
idly by iteration. (A regular function is of 
a certain form that makes the calculation 
of its coefficients straightforward.) Then 
they showed that any algebraic function 
can easily be converted to a regular func- 
tion. 

Still another application of this new 
approach to manipulating power series is 
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the discovery, by Richard Brent of the 
Australian National University, that the 
computation of the first N terms of any 
power of a power series is no harder than 
squaring the power series. To obtain this 
result, Brent changed the representation 
of the power series by taking its loga- 
rithm. He then solved the problem in its 
new form and changed back to the original 
representation by taking the exponential. 
Brent showed that these changes of rep- 
resentation can be computed with rela- 
tively few operations. The first N terms 
of both the logarithms and the exponen- 
tial can be computed with no more steps 
than are needed to multiply two Nth 
degree polynomials. 
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than are needed to multiply two Nth 
degree polynomials. 

The most recent, and to some mathe- 
maticians the most surprising, result on 
manipulating power series involves the 
speed of self-composition. Composition 
is a complicated operation that involves 
taking the power series of a power se- 
ries-that is, letting one power series 
serve as the variable, x, that is raised to 
powers in the other power series. Self- 
composition is composing a power series 
with itself. Repeated self-composition is 
of considerable practical importance, oc- 
curring in applications that include 
difference equations, numerical analysis, 
and the study of dynamical systems. By 
changing the representation of self-com- 
position problems, Brent and Traub 
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were able to show that any number of 
self-compositions can be done as quick- 
ly as a single composition. 

It is too soon to tell how great an im- 
pact these new algorithms will have on 
day-to-day computer calculations. But 
the intellectual impact of these al- 
gorithms is already apparent. As Boro- 
din explains, previously no one even 
considered looking for fast algorithms to 
manipulate power series. It was general- 
ly assumed that the naive way to do 
these calculations was the only way. The 
recent results, then, provide encouraging 
evidence that slow manipulations need 
not always be accepted. 

-GINA BARI KOLATA 
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The 1978 Nobel Prize in Economics The 1978 Nobel Prize in Economics 
For his contributions to our under- 

standing of decision-making, particularly 
in organizations, and for numerous other 
contributions to social science, Herbert 
A. Simon has been awarded the Nobel 
Prize in Economics for 1978. It is an ap- 
propriate tribute to an exceptional figure 
in contemporary science. Since I have 
known Simon as a colleague, collabora- 
tor, and friend for 25 years, it is natural 
for me to be asked to describe his work 
and its place in social science. But I do it 
with some hesitation. The canvas is too 
large for the brush, and not reliably pas- 
sive. I recall telling a friend once that the 
only commentary it would be safe to 
write about Herb Simon would be an epi- 
taph, because that would be the one 
comment on his work to which Herb 
would not reply. For once, however, the 
pleasure of honoring him overcomes a 
recognition that I do it inadequately. 

Herb Simon is an economist, psychol- 
ogist, political scientist, sociologist, phi- 
losopher, computer scientist, and a not- 
bad tetherball player. The number of dis- 
ciplines with which he has been associat- 
ed and the creativeness of even his minor 
efforts sometimes obscure the intellec- 
tual coherence of his major work. Al- 
though he has written many things and 
almost everything has stimulated impor- 
tant work, Simon's major professional 
life divides into two periods. The first is 
the period from 1947 to 1958, when he 
focused on decisions, particularly in or- 
ganizations, but also wrote extensively 
on a variety of problems in the modeling 
of behavior. This is the work that is best 
known in economics, political science, 
and sociology. The second period is from 
1958 to 1978, when his concerns shifted 
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to human problem-solving and artificial 
intelligence. This is the work, much of it 
done in collaboration with Allen Newell, 
that is best known in psychology and 
computer science. Although the two au- 
diences tend to be different, the two peri- 
ods show a common enthusiasm for 
trying to connect the behavioral study of 
intentional action and the engineering 
design of intelligent systems. 

Simon's deep concern for the engi- 
neering of intelligence is not always ex- 
plicit, but it is persistent. His interest in 
organizational decision-making was tied 
to an interest in improving decision-mak- 
ing through information technology. His 
interest in understanding human problem- 
solving was tied to an interest in artificial 
intelligence. He has sometimes been 
seen as overly rationalistic by behavioral 
students of human choice, and as overly 
behavioral by economists and other en- 
thusiasts for rational models of human 
action; but both sets of comments are 
misleading. He studies reason's limita- 
tions in the name of reason. Implicit in 
much of the research is a belief that im- 
provement in the design of intelligence 
requires an understanding of human be- 
havior. He is an insightful theorist of 
thinking, deciding, problem-solving, and 
choosing. But he studies human behav- 
ior not simply because of curiosity about 
how people behave, although he has 
that, but more because of an interest in, 
and affinity for, the perfection of in- 
telligence. Like B. F. Skinner, with 
whom he shares almost nothing else, he 
is an unrepentant knight of the enlighten- 
ment. Not Freud, but Descartes. 

It is a sweet fate and a tribute to the 
power of Simon's intellect that this man, 
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whose most unwavering characteristic is 
commitment to the intelligence of ratio- 
nal discourse and to the technology of 
reason, should receive the Nobel Prize 
for his provocative explications of some 
of the ways in which human beings and 
human institutions are often intelligent 
without being, in the usual sense, ratio- 
nal. Simon's major contributions to the 
economics of decisions are found in a 
small number of works published be- 
tween 1947 and 1958: Administrative Be- 
havior (1947), Models of Man (1957), and 
Organizations (1958). In those works, 
and the articles from which they were 
drawn, he outlined some ways in which 
economic theories of the firm and other 
theories of rational choice might be re- 
vised. The specifics were important, but 
the impact of the work was less through 
the details than through the basic refor- 
mulations they reflected. 

In company with most economists, Si- 
mon began with the assumption that hu- 
man choice behavior was intendedly ra- 
tional. That is, he assumed that decision- 
makers had a set of criteria known to 
them in advance of their actions, and 
that they made choices by measuring es- 
timates of the consequences of alterna- 
tive actions against the criteria. What Si- 
mon added was an awareness of the in- 
formational and computational limits on 
rationality within human institutions. 
Where most theories of rational choice 
assumed that all relevant alternatives 
were known, Simon suggested that alter- 
natives had to be discovered through 
search and that typically only a relatively 
few alternatives were considered. Where 
most theories assumed that information 
on the consequences of alternatives was 
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