trouble to reach some obscure corner of
London” in order to hear a rock group
called ‘‘The Citations.”’

Some critics feel that this intense pre-
occupation with the stuff of citations
belies a drive for the corporate dollar, of
which Garfield has quite a few at stake.
As one reviewer of his Essays put it,
“‘Garfield promotes his products; Gar-
field announces his plans for editorial
change; Garfield evaluates his products
for the information community; Garfield
introduces his associates and vouches
for their character and integrity; Garfield
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acknowledges the adulation his pub-
lications have received among users.
Garfield’s gross is his intense pre-
occupation with his corporate welfare. It
is never so labeled, but no label is
needed.”’

But it is, after all, Garfield’s corporate
self-interest, coupled with his subtle in-
sights into the information needs of the
scientific community, that has put such
revolutionary tools into the hands of sci-
entists around the globe. And, as Sci-
ence found in Philadelphia, the craving
for corporate growth has not been at the

expense of a certain style. The company’s
fleet of chauffeur-driven cars, for example,
includes a Cadillac, a Lincoln, a Jaguar,
and, until 2 years ago, at which point
Garfield gave it to his son, a Checker.
—WIiLLIAM J. BROAD

Erratum: In the report ‘*Children absorb tris-BP
flame retardant from sleepwear: urine contains the
mutagenic metabolite, 2-3-dibromopropanol”” by A.
Blum et al. (15 September 1978, p. 1020), the unit of
measure for dibromopropanol in Table 1, column 3,
should have been nanograms, rather than milli-
grams, per milliliter. In reference 28, sentence 2, the
word “‘sells’’ should have been ‘‘formerly sold.”” We
apologize for this error to Apex Chemical Company,
Inc., which discontinued sale of Fyrol flame retar-
dant, for use in children’s sleepwear.

Computer Science: Surprisingly Fast Algorithms

Mathematicians have traditionally
been more concerned with showing that
solutions to problems exist than with de-
termining what the solutions are. The ad-
vent of the computer changed this situa-
tion by making it possible to at least
think about computing solutions to com-
plex problems. But it has become in-
creasingly clear that there is a big dif-
ference between a solution that can be
computed in theory and one that can be
computed in practice. Often the straight-
forward way of solving a problem in-
volves so many operations that, even for
moderately sized problems, the solution
is effectively noncomputable.

From this concern with finding com-
putable solutions to problems came the
idea of developing “‘fast’’ algorithms that
require fewer steps than those currently
in use. The payoffs from fast algorithms
can be enormous. For example, the de-
velopment of the fast Fourier transform
(FFT) completely changed whole areas
of science, such as crystallography, by
making possible computations that were
previously infeasible. Similarly, entire
issues of engineering journals have been
devoted to applications of the FFT.

Recently, computer scientists have
discovered new fast algorithms for ma-
nipulating polynomials and power series.
(A polynomial is an expression of the
form ay + ax + ax® + az® + ...+ a0,
where the a’s are constants. The integer
n is the ‘‘degree’ of the polynomial.
A power series is a polynomial extended
to include an infinite number of terms.)
Since operations on power series are so
common, the new algorithms could be of
great practical importance.

The new algorithms are also inter-
esting from a mathematical point of

SCIENCE, VOL. 202, 24 NOVEMBER 1978

view. According to Alan Borodin of the
University of Toronto, they are com-
pletely nonintuitive and so are ‘‘very,
very surprising.”” For example, one re-
sult is that any power of a polynomial
can be computed as quickly as squaring
the polynomial.

Discoveries of these fast algorithms
began in 1972, when M. Sieveking of the
University of Zurich found a new, rapid
way to compute the first N terms of the
reciprocal of a power series. Then H. T.
Kung of Carnegie-Mellon University no-
ticed that Sieveking’s method is actually
a well-known procedure called Newton
iteration. Shortly after Kung made this
observation, John Lipson of the Univer-
sity of Toronto and, independently, Kung
and Joseph Traub of Carnegie-Mellon
determined that Newton iteration can be
applied to solve power series equations,
thus leading to a number of fast al-
gorithms.

The idea behind Newton iteration is to
approximate the power series solution to
a particular equation with a polynomial
consisting of the initial terms of the pow-
er series that is the actual solution. At
each step of the Newton iteration, more
terms are added to the polynomial ap-
proximation. Traub explains that when
Newton iteration is applied to power se-
ries equations, the iteration always con-
verges and the number of correct terms
at least doubles at each step.

Using Newton iteration, Kung showed
that the first N terms of the reciprocal of
a power series can be computed as
quickly as multiplying two Nth degree
polynomials. The fastest known method
for polynomial multiplication is the FFT,
which requires N log N operations.

Dividing a power series by a power se-
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ries can be thought of as a multiplication
problem in which one power series is
multiplied by the reciprocal of another.
When division is represented in this way,
Kung’s result about reciprocals leads to
the conclusion that the first N terms of
the quotient of two power series can be
computed in no more than N log N steps.
Thus division is no harder than multipli-
cation.

Kung and Traub recently generalized
the result about power series to apply to
all algebraic functions, including such
complicated functions as the reciprocal
of a power series. These algebraic func-
tions, which arise in many areas of math-
ematics, are the solutions of polynomial
equations in which the coefficients of the
variables are themselves polynomials.
The textbook method of computing alge-
braic functions is by comparison of coef-
ficients—a method that can be extremely
slow. For example, if the algebraic func-
tion satisfies a polynomial of degree n,
computation of the first N terms of the
polynomial by comparison of coeffi-
cients requires as many as N" opera-
tions. With new algorithms, the first N
terms of any algebraic function can be
computed with the same number of oper-
ations that are needed to multiply two
Nth degree polynomials, or N log N.
They established this result by showing
that the first N terms of any ‘‘regular”’
algebraic function can be computed rap-
idly by iteration. (A regular function is of
a certain form that makes the calculation
of its coefficients straightforward.) Then
they showed that any algebraic function
can easily be converted to a regular func-
tion.

Still another application of this new
approach to manipulating power series is
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the discovery, by Richard Brent of the
Australian National University, that the
computation of the first N terms of any
power of a power series is no harder than
squaring the power series. To obtain this
result, Brent changed the representation
of the power series by taking its loga-
rithm. He then solved the problem in its
new form and changed back to the original
representation by taking the exponential.
Brent showed that these changes of rep-
resentation can be computed with rela-
tively few operations. The first N terms
of both the logarithms and the exponen-
tial can be computed with no more steps
than are needed to multiply two Nth
degree polynomials.

The most recent, and to some mathe-
maticians the most surprising, result on
manipulating power series involves the
speed of self-composition. Composition
is a complicated operation that involves
taking the power series of a power se-
ries—that is, letting one power series
serve as the variable, x, that is raised to
powers in the other power series. Self-
composition is composing a power series
with itself. Repeated self-composition is
of considerable practical importance, oc-
curring in applications that include
difference equations, numerical analysis,
and the study of dynamical systems. By
changing the representation of self-com-
position problems, Brent and Traub

were able to show that any number of
self-compositions can be done as quick-
ly as a single composition.

It is too soon to tell how great an im-
pact these new algorithms will have on
day-to-day computer calculations. But
the intellectual impact of these al-
gorithms is already apparent. As Boro-
din explains, previously no one even
considered looking for fast algorithms to
manipulate power series. It was general-
ly assumed that the naive way to do
these calculations was the only way. The
recent results, then, provide encouraging
evidence that slow manipulations need
not always be accepted.

—GINA BARI KOLATA

The 1978 Nobel Prize in Economics

For his contributions to our under-
standing of decision-making, particularly
in organizations, and for numerous other
contributions to social science, Herbert
A. Simon has been awarded the Nobel
Prize in Economics for 1978. It is an ap-
propriate tribute to an exceptional figure
in contemporary science. Since I have
known Simon as a colleague, collabora-
tor, and friend for 25 years, it is natural
for me to be asked to describe his work
and its place in social science. But I do it
with some hesitation. The canvas is too
large for the brush, and not reliably pas-
sive. I recall telling a friend once that the
only commentary it would be safe to
write about Herb Simon would be an epi-
taph, because that would be the one
comment on his work to which Herb
would not reply. For once, however, the
pleasure of honoring him overcomes a
recognition that I do it inadequately.

Herb Simon is an economist, psychol-
ogist, political scientist, sociologist, phi-
losopher, computer scientist, and a not-
bad tetherball player. The number of dis-
ciplines with which he has been associat-
ed and the creativeness of even his minor
efforts sometimes obscure the intellec-
tual coherence of his major work. Al-
though he has written many things and
almost everything has stimulated impor-
tant work, Simon’s major professional
life divides into two periods. The first is
the period from 1947 to 1958, when he
focused on decisions, particularly in or-
ganizations, but also wrote extensively
on a variety of problems in the modeling
of behavior. This is the work that is best
known in economics, political science,
and sociology. The second period is from
1958 to 1978, when his concerns shifted

to human problem-solving and artificial
intelligence. This is the work, much of it
done in collaboration with Allen Newell,
that is best known in psychology and
computer science. Although the two au-
diences tend to be different, the two peri-
ods show a common enthusiasm for
trying to connect the behavioral study of
intentional action and the engineering
design of intelligent systems.

Simon’s deep concern for the engi-
neering of intelligence is not always ex-
plicit, but it is persistent. His interest in
organizational decision-making was tied
to-an interest in improving decision-mak-
ing through information technology. His
interest in understanding human problem-
solving was tied to an interest in artificial
intelligence. He has sometimes been
seen as overly rationalistic by behavioral
students of human choice, and as overly
behavioral by economists and other en-
thusiasts for rational models of human
action; but both sets of comments are
misleading. He studies reason’s limita-
tions in the name of reason. Implicit in
much of the research is a belief that im-
provement in the design of intelligence
requires an understanding of human be-
havior. He is an insightful theorist of
thinking, deciding, problem-solving, and
choosing. But he studies human behav-
ior not simply because of curiosity about
how people behave, although he has
that, but more because of an interest in,
and affinity for, the perfection of in-
telligence. Like B. F. Skinner, with
whom he shares almost nothing else, he
is an unrepentant knight of the enlighten-
ment. Not Freud, but Descartes.

It is a sweet fate and a tribute to the
power of Simon’s intellect that this man,
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whose most unwavering characteristic is
commitment to the intelligence of ratio-
nal discourse and to the technology of
reason, should receive the Nobel Prize
for his provocative explications of some
of the ways in which human beings and
human institutions are often intelligent
without being, in the usual sense, ratio-
nal. Simon’s major contributions to the
economics of decisions are found in a
small number of works published be-
tween 1947 and 1958: Administrative Be-
havior (1947), Models of Man (1957), and
Organizations (1958). In those works,
and the articles from which they were
drawn, he outlined some ways in which
economic theories of the firm and other
theories of rational choice might be re-
vised. The specifics were important, but
the impact of the work was less through
the details than through the basic refor-
mulations they reflected.

In company with most economists, Si-
mon began with the assumption that hu-
man choice behavior was intendedly ra-
tional. That is, he assumed that decision-
makers had a set of criteria known to
them in advance of their actions, and
that they made choices by measuring es-
timates of the consequences of alterna-
tive actions against the criteria. What Si-
mon added was an awareness of the in-
formational and computational limits on
rationality within human institutions.
Where most theories of rational choice
assumed that all relevant alternatives
were known, Simon suggested that alter-
natives had to be discovered through
search and that typically only a relatively
few alternatives were considered. Where
most theories assumed that information
on the consequences of alternatives was
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