
trouble to reach some obscure corner of 
London" in order to hear a rock group 
called "The Citations." 

Some critics feel that this intense pre- 
occupation with the stuff of citations 
belies a drive for the corporate dollar, of 
which Garfield has quite a few at stake. 
As one reviewer of his Essays put it, 
"Garfield promotes his products; Gar- 
field announces his plans for editorial 
change; Garfield evaluates his products 
for the information community; Garfield 
introduces his associates and vouches 
for their character and integrity; Garfield 

trouble to reach some obscure corner of 
London" in order to hear a rock group 
called "The Citations." 

Some critics feel that this intense pre- 
occupation with the stuff of citations 
belies a drive for the corporate dollar, of 
which Garfield has quite a few at stake. 
As one reviewer of his Essays put it, 
"Garfield promotes his products; Gar- 
field announces his plans for editorial 
change; Garfield evaluates his products 
for the information community; Garfield 
introduces his associates and vouches 
for their character and integrity; Garfield 

trouble to reach some obscure corner of 
London" in order to hear a rock group 
called "The Citations." 

Some critics feel that this intense pre- 
occupation with the stuff of citations 
belies a drive for the corporate dollar, of 
which Garfield has quite a few at stake. 
As one reviewer of his Essays put it, 
"Garfield promotes his products; Gar- 
field announces his plans for editorial 
change; Garfield evaluates his products 
for the information community; Garfield 
introduces his associates and vouches 
for their character and integrity; Garfield 

acknowledges the adulation his pub- 
lications have received among users. 
Garfield's gross is his intense pre- 
occupation with his corporate welfare. It 
is never so labeled, but no label is 
needed." 

But it is, after all, Garfield's corporate 
self-interest, coupled with his subtle in- 
sights into the information needs of the 
scientific community, that has put such 
revolutionary tools into the hands of sci- 
entists around the globe. And, as Sci- 
ence found in Philadelphia, the craving 
for corporate growth has not been at the 
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expense of a certain style. The company's 
fleet of chauffeur-driven cars, for example, 
includes a Cadillac, a Lincoln, a Jaguar, 
and, until 2 years ago, at which point 
Garfield gave it to his son, a Checker. 

-WILLIAM J. BROAD 
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Erratum: In the report "Children absorb tris-BP 
flame retardant from sleepwear: urine contains the 
mutagenic metabolite, 2-3-dibromopropanol" by A. 
Blum et al. (15 September 1978, p. 1020), the unit of 
measure for dibromopropanol in Table 1, column 3, 
should have been nanograms, rather than milli- 
grams, per milliliter. In reference 28, sentence 2, the 
word "sells" should have been "formerly sold." We 
apologize for this error to Apex Chemical Company, 
Inc., which discontinued sale of Fyrol flame retar- 
dant, for use in children's sleepwear. 
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Computer Science: Surprisingly Fast Algorithms 
Mathematicians have traditionally 

been more concerned with showing that 
solutions to problems exist than with de- 
termining what the solutions are. The ad- 
vent of the computer changed this situa- 
tion by making it possible to at least 
think about computing solutions to com- 
plex problems. But it has become in- 
creasingly clear that there is a big dif- 
ference between a solution that can be 
computed in theory and one that can be 
computed in practice. Often the straight- 
forward way of solving a problem in- 
volves so many operations that, even for 
moderately sized problems, the solution 
is effectively noncomputable. 

From this concern with finding com- 
putable solutions to problems came the 
idea of developing "fast" algorithms that 
require fewer steps than those currently 
in use. The payoffs from fast algorithms 
can be enormous. For example, the de- 
velopment of the fast Fourier transform 
(FFT) completely changed whole areas 
of science, such as crystallography, by 
making possible computations that were 
previously infeasible. Similarly, entire 
issues of engineering journals have been 
devoted to applications of the FFT. 

Recently, computer scientists have 
discovered new fast algorithms for ma- 
nipulating polynomials and power series. 
(A polynomial is an expression of the 
form ao + alx + a2x2 + a3x3 + ... + al,?x, 
where the a's are constants. The integer 
n is the "degree" of the polynomial. 
A power series is a polynomial extended 
to include an infinite number of terms.) 
Since operations on power series are so 
common, the new algorithms could be of 
great practical importance. 

The new algorithms are also inter- 
esting from a mathematical point of 
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view. According to Alan Borodin of the 
University of Toronto, they are com- 
pletely nonintuitive and so are "very, 
very surprising." For example, one re- 
sult is that any power of a polynomial 
can be computed as quickly as squaring 
the polynomial. 

Discoveries of these fast algorithms 
began in 1972, when M. Sieveking of the 
University of Zurich found a new, rapid 
way to compute the first N terms of the 
reciprocal of a power series. Then H. T. 
Kung of Carnegie-Mellon University no- 
ticed that Sieveking's method is actually 
a well-known procedure called Newton 
iteration. Shortly after Kung made this 
observation, John Lipson of the Univer- 
sity of Toronto and, independently, Kung 
and Joseph Traub of Carnegie-Mellon 
determined that Newton iteration can be 
applied to solve power series equations, 
thus leading to a number of fast al- 
gorithms. 

The idea behind Newton iteration is to 
approximate the power series solution to 
a particular equation with a polynomial 
consisting of the initial terms of the pow- 
er series that is the actual solution. At 
each step of the Newton iteration, more 
terms are added to the polynomial ap- 
proximation. Traub explains that when 
Newton iteration is applied to power se- 
ries equations, the iteration always con- 
verges and the number of correct terms 
at least doubles at each step. 

Using Newton iteration, Kung showed 
that the first N terms of the reciprocal of 
a power series can be computed as 
quickly as multiplying two Nth degree 
polynomials. The fastest known method 
for polynomial multiplication is the FFT, 
which requires N log N operations. 

Dividing a power series by a power se- 
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ries can be thought of as a multiplication 
problem in which one power series is 
multiplied by the reciprocal of another. 
When division is represented in this way, 
Kung's result about reciprocals leads to 
the conclusion that the first N terms of 
the quotient of two power series can be 
computed in no more than N log N steps. 
Thus division is no harder than multipli- 
cation. 

Kung and Traub recently generalized 
the result about power series to apply to 
all algebraic functions, including such 
complicated functions as the reciprocal 
of a power series. These algebraic func- 
tions, which arise in many areas of math- 
ematics, are the solutions of polynomial 
equations in which the coefficients of the 
variables are themselves polynomials. 
The textbook method of computing alge- 
braic functions is by comparison of coef- 
ficients-a method that can be extremely 
slow. For example, if the algebraic func- 
tion satisfies a polynomial of degree n, 
computation of the first N terms of the 
polynomial by comparison of coeffi- 
cients requires as many as N'" opera- 
tions. With new algorithms, the first N 
terms of any algebraic function can be 
computed with the same number of oper- 
ations that are needed to multiply two 
Nth degree polynomials, or N log N. 
They established this result by showing 
that the first N terms of any "regular" 
algebraic function can be computed rap- 
idly by iteration. (A regular function is of 
a certain form that makes the calculation 
of its coefficients straightforward.) Then 
they showed that any algebraic function 
can easily be converted to a regular func- 
tion. 

Still another application of this new 
approach to manipulating power series is 
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