
to its length, hence the advantage of long 
tendons in ungulates (11). Sharks, and 
perhaps many bony fish, have their vast 
locomotory musculature entrained with 
the skin that acts as a whole-body tendon 
extending from the cranium to the tail 
end of the backbone. 

If the shark's skin is to transmit forces 
of contracting muscles to the tail, the 
skin must be stiff for the duration of 
muscle contraction. Our findings lead us 
to the following interpretation: At rest, 
the muscles on both sides of the fish have 
the same length and cross-sectional area, 
and the fibers in the skin make a 60? 
angle with the fish's long axis. Internal 
pressure is low and so is skin stiffness. 

To bend sharply as in fast swimming, 
the muscle on one side shortens and in- 
creases in cross-sectional area and girth. 
This causes fibers in the skin overlying 
the contracting muscles to increase their 
angle. The fiber angle controls the 
change in girth per unit change in length 
of the skin in concert with the surface of 
the contracting muscle. The changes in 
fiber angle imposed by the muscle causes 
the skin to remain taut in containing the 
muscle volume and to avoid wrinkling or 
loss of tension on the concave side of the 
fish. 

Contracting muscle pulls on myosepta 
that pull on the skin and backbone. Since 
skin stiffness is high, tensile forces ap- 
plied to it are transmitted by it from the 
head to the tail. Since the backbone re- 
sists compressive changes in the fish's 
body length, contracting muscles pull on 
one side of the head and tail causing the 
fish to bend rather than to shorten. The 
importance of the skin as an exotendon 
that transmits muscular force and dis- 
placement is, we believe, noteworthy. 
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220 chart recorder. The lead allowed the fish to 
resume its habitual swimming around the perim- 
eter of a tank (8 m in diameter by 1.6 m depth) at 
Marineland, Inc., St. Augustine, Fla. All mea- 
surements of curvature and skin deformations 
were made from motion pictures taken with a 
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pinnis), one sharpnose (Rhizoprionodon terrae- 
novae), and one Florida smoothhound (Mus- 
telus norrisi) were caught off Beaufort, N.C., 
and three lemon sharks were caught off St. Au- 
gustine, Fla. Pushing a sharp object to dent the 
lateral skin of a living or freshly dead shark 
causes two intersecting grooves to appear in the 
skin. These grooves radiate from the pressure 
point. We measured the azimuth of the grooves 
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section that the groove azimuth was the fiber 
azimuth on three sharks, we assumed all further 
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8. Samples were secured by snap swivels passing 
through holes in the sample edges. Wire fishing 
leaders connected the snap swivels to four sets 
of binding posts mounted 90? apart in the plane 
of the specimen. The use of point attachments 
permitted individual adjustment of tension in the 
wires and allowed stretch in the orthogonal di- 
rection. Two sets of binding posts were mounted 
to sliding carriages whose motions were con- 
trolled by lead screws and which caused exten- 
sion of the sample. Extension in each direction 
was measured as the net movement between 
two pins stuck lightly in the sample. The pins 
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Extensive air showers (EAS) created 
by cosmic rays with energies greater 
than 1019 eV (approximately 1 calorie) 
are predicted to occur with a frequency 
of 1.5 x 10-9 m-2 day-1 sr-' (1). Obvi- 
ously a large detector is required to ob- 
serve these events with any regularity. I 
will show here that large bodies of water 
will convert this energy into a detectable 
acoustic signal and that these events are 
probably being detected, as undesired 
background noise by U.S. Navy fixed 
underwater acoustic installations used 
for the calibration of equipment and the 

Table 1. Calculated detection range for an 
acoustic signal generated by the nuclear-ac- 
tive components of an EAS with energy 
Eo = 1019 eV. 

Fre- Sea Detection range (km) 
quency state 0 dB 6 dB 20 dB 

100 Hz 6 0.03 0.01 0.004 
0 0.2 0.1 0.02 

1 kHz 6 0.02 0.01 0.004 
0 0.4 0.2 0.04 

10kHz 6 0.1 0.06 0.01 
0 2.0 1.2 0.3 

30 kHz 6 0.3 0.2 0.04 0 1.6 1.2 0.4 
100 kHz f 6 0.3 0.2 0.07 

{0 0.5 0.4 0.2 
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drove the cores of colinear Linear Variable Dif- 
ferential Transducers. Force was held con- 
stant by monitoring sensor output and by ad- 
justing the appropriate lead screw. Samples 
were bathed with fresh seawater during the 
experiments. 

9. Skin deformation was metered by two thumb- 
tacks stuck through a piece of flexible white 
plastic (0.5 mm thick by 15 mm wide by 80 to 150 
mm long) into the skin of the shark. One tack 
held the skin and plastic in register while the 
other tack was attached to the skin but free to 
ride back and forth in a slot cut in the plastic. 
The length of the plastic and the distance be- 
tween the tacks were measured on projected 
motion picture images, and the ratio of the inter- 
tack distance to length of plastic was computed 
for every fourth frame. 
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measurement of underwater acoustic sig- 
nals and spectra (2). 

The source of cosmic-ray particles is 
an important unanswered question. Cos- 
mic-ray protons with energies much 
greater than 1021 eV should not exist if 
their origin is extragalactic (3), since 
they lose energy through interactions 
with low-energy photons which consti- 
tute the 3?K universal background radia- 
tion. Events of this energy occur about 
100 times less frequently than the 1019- 
eV events. The largest instruments pres- 
ently used will detect events above 1021 
eV so rarely that their data will be in- 
conclusive. The acoustic detection tech- 
nique should determine the presence or 
absence of very-high-energy, cosmic-ray 
particles. 

An EAS has three principal com- 
ponents (3). The first is the nuclear-ac- 
tive particle core containing about '/8 of 
the total energy in a radius of 10 m. The 
second is the electron component, with 
about the same fraction of the total ener- 
gy as the nuclear component. Half of the 
electrons strike within a 50-m radius of 
the core. The third component, the 
muons, contain about 3/4 of the total en- 
ergy; one half of the muons strike within 
about 320 m of the core. The more ener- 
getic particles strike closer to the core. It 
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Table 2. Estimated detection range (in kilome- 
ters), assuming that there are several values 
of Eo and that the minimum detectable signal 
is 6 dB above sea state 0 noise. 

Eo(eV) 100 Hz 1kHz 10kHz 30kHz 

1017 0 0.004 0.01 0.03 
1018 0.01 0.02 0.1 0.3 
1019 0.08 0.2 1.2 1.2 
1020 0.8 2 6 3 
1021 8 18 17 5 
1022 84 98 30 7 

Table 3. Expected detection frequency of EAS by a single detector. The sensitive range is from 
Table 2. An acceptance angle of 2rr steradians is assumed. 

Estimated event Events expected per day by one detector 
Eo (eV) occurrence 

(km-2 day-' sr-1) 100 Hz 1 kHz 10 kHz 30 kHz 

1017 39 0 0.01 0.08 0.7 
1018 0.24 5 x 10-4 2 10-3 0.08 0.3 
1019 1.5 x 10-3 2 x 10-4 2 x 10-3 0.04 0.04 
1020 10-5 1 X 10-4 8 x 10-4 0.01 1 X 10-3 
1021 6 x 10-7 1 X 10-3 4 x 10-3 3 x 10-3 3 x 10-4 
1022 4 x 10-10 6 x 10-5 8 x 10-5 7 x 10-6 4 x 10-7 

has been demonstrated that both electro- 
magnetic energy and energetic charged 
particles create acoustic pulses when im- 
pacting a fluid (4, 5). 

If the pressure associated with the 
acoustic pulse created by an extensive 
air shower striking a medium is esti- 
mated by assuming that the energy is de- 
posited as thermal energy exponentially 
in our detection medium, then 

T(1 - e-ax)Eo 
A 

where T is the fraction of energy that is 
transferred as thermal energy, Eo is the 
energy in the shower, A is the area of the 
shower, and a is the attenuation length in 
the medium. The energy intensity will be 

dE a Te-xEo dx_ a Tce-XEo 
dt A dt A 

where c is the speed of light. The peak- 
to-peak pressure will be (5) 

p v,acEoTc 
C[JA 

where v is the velocity of sound in the 
medium, 8/ is the volume coefficient of 
thermal expansion (6), Cp is the heat ca- 
pacity at constant pressure, and J is the 
mechanical equivalent of heat. 

A water target struck by the core parti- 
cles depositing 1/8 of the total energy in 
10-m radius will generate a pressure, 

P = 8.5 x 10-19TEO dyne/cm2 

where Eo is measured in electron volts. 
Consider a specific example. Let T = 1 
and E0o = 1019 eV: then the peak-to-peak 
pressure will be 8.5 dyne/cm2 or 19 dB 
with reference to 1 dyne/cm2 (93 dB with 
reference to 2 x 10-4 dyne/cm2). 

An underwater detector near the core 
of the shower would register a "click," 
whereas a detector far away would regis- 
ter something akin to thunder. (An ob- 
server close to a lightning strike hears a 
sharp crack, whereas a distant observer 
hears a low rumble.) The maximum de- 
tectable range depends upon the charac- 
teristic frequency of the sound and the 
background noise. However, the shifting 
to lower frequencies by the "thunder ef- 
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fect" should be beneficial since lower 
frequencies are significantly less attenu- 
ated in water. 

It is believed (6) that pressure pulses 
of this magnitude are responsible for the 
"clicks" heard when a person's head is 
illuminated with pulsed microwave ener- 
gy. A person in the core of an extensive 
air shower might also hear a "click" if 
the pulse is not too short. This would be 
a rare event, however, since only about 
one person in the world per year would 
happen to be in the core of a shower with 
energy greater than 1019 eV. 

Calculation of the maximum detection 
range requires that the signal per fre- 
quency interval be compared to the noise 
in a similar frequency interval. The 
frequency bandwidth of the EAS-gener- 
ated acoustic pulse is estimated by ap- 
plying the uncertainty principle, Ak 
A(2R) - 1, where k is 27r/wavelength and 
R is the radius of the particle impact 
area. The bandwidth is then v/47rR, and 
the signal pressure per 1-Hz bandwidth 
is 

p 4f3aTcEo 
CpJR 

where v is the frequency. 
The 1019-eV event will yield a pressure 

per 1-Hz bandwidth of 0.7 dyne/cm2. 
This pulse will have a detection range as 
shown in Table 1. Noise and attenuation 
data are adapted from [(7), pp. 12-16]. 
Sea state 6 usually dominates over noise 
as a result of marine life and is therefore 
a measure of worse case background 
noise. Three signal-to-noise cases are 
listed, 0 dB where signal pressure is 
equal to equivalent noise pressure, 6 dB 
where signal pressure is twice the equiv- 
alent noise pressure, and 20 dB where 
signal is ten times the equivalent noise 
pressure. The detection range is frequen- 
cy-dependent with a maximum between 
10 and 30 kHz. Background noise cuts 
down the range at lower frequencies, 
whereas increased attentuation dimin- 
ishes the range at higher frequencies. 

In the calculations it is assumed that a 
spherical wave is propagating in in- 
finitely deep seawater with constant tem- 
perature, salinity, and pressure. This as- 

sumption underestimates the range since 
channeling effects are prominent in the 
ocean. 

Detection ranges for showers with var- 
ious total energies are shown in Table 2. 
The more energetic showers exhibit a 
"bass boost" since they generate a low- 
frequency pulse that is much larger than 
the low-frequency noise. This low-fre- 
quency sound wave is essentially re- 
duced in amplitude only by spherical 
spreading, whereas higher frequencies 
experience an additional attenuation as 
they travel. Thus, a large detectable 
range for showers with energy above 1019 
eV is estimated. In Table 2 it is assumed 
that the minimum detectable signal oc- 
curs at 6 dB above sea state 0 noise. Ta- 
bles 1 and 2 show that a single detector 
may have a sensitive detection radius of 
several kilometers for EAS with energies 
of 1019 eV or more. 

The number of EAS events expected 
to be detected per day by a single detec- 
tor are shown in Table 3. Each detector 
is assumed to have a sensitive radius as 
indicated in Table 2. Several events per 
week per detector are expected for EAS 
with primary energy at or below 1018 eV, 
if the detection frequency is 10 to 30 
kHz. Higher-energy events would be de- 
tected at lower frequencies. The "thun- 
der effect" should aid in the detection of 
these events. An array of 100 detectors 
would detect about three 1022 eV events 
per years at 1 kHz, if such events occur 
with the extrapolated frequency. Occur- 
rence rates per EAS events with energy 
greater than 1019 eV are extrapolations 
from Andrews et al. (1) based on a slope 
of -2.2 with energy. 

The human ear can easily detect 
acoustic signals 20 dB above the noise 
levels considered here [(7), p. 17]. At- 
tenuation drops the signal below this lev- 
el in a short distance; however, a diver 
should hear a "click" from a 1017-eV 
EAS every week or so. 

Actual signal detection ranges may 
well be larger than calculated here, since 
several mechanisms will tend to enhance 
them. These include concentration of the 
more energetic particles toward the core 
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of the shower, channeling effects in the 
water, and correlation detection tech- 
niques. Each 6-dB (0.3 dyne/cm2) in- 
crease in signal will increase the detected 
EAS events by approximately a factor 
of 4. 

The contribution to the acoustic signa- 
ture of an EAS by the various particles in 
the shower should be different, since 
they differ in this radial distribution from 
the core, total energy, and radiation ab- 
sorption length. The strongest signal will 
come from the small region near the core 
where the nuclear particles strike. The 
electrons will contribute a weaker signal 
from a larger surface area, whereas the 
muons will contribute a similar signal 
whose origin is a larger surface area and 
a thicker layer because of their reduced 
interaction with matter. The muon ener- 
gy distribution is peaked near the core, 
even though the particles are widely dis- 
tributed. 

The use of detectors with angular sen- 
sitivity should make it possible to pin- 
point the position and area of the shower 
and thus the energy of the primary cos- 
mic-ray particle. The spectral content 
and the radial distribution of sound gen- 
erated at various distances from the core 
may allow one to obtain detailed infor- 
mation about the particles in the shower. 

As stated earlier, the U.S. Navy has 
several sophisticated hydrophone listen- 
ing stations that have operated for exten- 
sive periods of time. These stations have 
probably detected signals from EAS. 
The signals should appear as a broad- 
band "rumbling" noise of moderate du- 
ration, with occasional short higher-fre- 
quency "clicks." 

W. Louis BARRETT 

Physics Department, 
Western Washington University, 
Bellingham 98225 
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and the radial distribution of sound gen- 
erated at various distances from the core 
may allow one to obtain detailed infor- 
mation about the particles in the shower. 

As stated earlier, the U.S. Navy has 
several sophisticated hydrophone listen- 
ing stations that have operated for exten- 
sive periods of time. These stations have 
probably detected signals from EAS. 
The signals should appear as a broad- 
band "rumbling" noise of moderate du- 
ration, with occasional short higher-fre- 
quency "clicks." 

W. Louis BARRETT 

Physics Department, 
Western Washington University, 
Bellingham 98225 
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Metastable Oxygen Emission Bands 

Abstract. Recombination of ground-state oxygen atoms populates six different 
bound electronic states of molecular oxygen. Of the six optical transitions expected 
between the three upper states at 4 to 4.5 electron volts and the two lowest states, 
five have been observed in the afterglow of a conventional helium-oxygen microwave 
discharge in both 1602 and 1802, three of them for the first time in gas-phase spectra. 
Generation of these emissions from oxygen atoms in a system free of molecular 
oxygen establishes that atom recombination is the production mechanism. 
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