
Bern, by David Gross and Frank Wil- 
czek of Princeton University, and by 
Weinberg. Quarks (and hadrons) but not 
leptons feel the strong force, and the 
name of the theory derives from the col- 
or property of quarks, which is the char- 
acteristic involved in the strong inter- 
action. 

The theory is the most complicated of 
the field theories, in one sense, because 
there are eight fields and corresponding 
force-carrying quanta. The quanta are 
massless; hence the force between 
quarks is of infinite range. For complex 
reasons, however, the force between 
hadrons is of short range-10-13 centime- 
ter. 

But the most difficult feature of quan- 
tum chromodynamics is the strength of 
the strong force. Because it is "so 
strong," theorists cannot calculate its 
properties in the way successfully used 
in quantum electrodynamics and in the 
unified theory. For example, in order to 
explain why quarks do not seem to exist 
as free particles, physicists have postu- 
lated that the strong force is too strong to 
permit quarks to pull free from one an- 
other. But theorists have as yet been un- 
able to show that quantum chromody- 
namics has this property. 

Paradoxically, a success of quantum 
chromodynamics is related to the experi- 
ments that showed the lumpiness of the 
proton and neutron. The same experi- 
ments also suggested that the quarks in 
these particles behave as if they are only 
weakly bound together. Gross and Wil- 
czek of Princeton and David Politzer, 
now at the California Institute of Tech- 
nology, have shown that quantum chro- 
modynamics is the only realistic field 
theory with this behavior-namely, that 
the force between quarks becomes weak- 
er as they are squeezed together. 

Because high-energy experiments will 
probe the short distance behavior of the 
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strong force, they will contribute little to 
the resolution of what some theorists 
consider the major challenge of particle 
theory, namely, the problem of quark 
confinement (that is, why free quarks do 
not exist). The short-range behavior of 
the strong nuclear force is not without in- 
terest, however, and the higher energies 
available at PETRA and PEP will be im- 
portant to the quantitative verification of 
two aspects of quantum chromodynam- 
ics. The first phenomenon is given the 
term jets. In the electron-positron colli- 
sion, two quarks may be created and 
they will proceed to speed away from the 
collision region in opposite directions. 
The hadrons created as these quarks 
transform (as they must because there 
'are" no free quarks) will, then, tend to 
be in two groups that assume the quark 
trajectories. The effect, already con- 
vincingly demonstrated at lower colli- 
sion energies, is much more prominent at 
high collision energies. In addition, jets 
due to the appearance of additional parti- 
cles such as the quanta of the strong nu- 
clear force may be observable. Quantum 
chromodynamics makes quantitative 
predictions concerning the details of jet 
behavior that will be testable at PETRA 
and PEP. 

A second important feature is the de- 
tailed form of the force between quarks 
at short distances-that is, the force law 
that is analogous to the inverse square of 
the separation that enters into the cou- 
lomb force between electrically charged 
particles. One of the exciting aspects of 
the J/psi particle is that physicists have 
been able to deduce possible forms of the 
quark-quark force from the masses of the 
J/psi and the many other particles in its 
immediate family. A particle such as the 
J/psi, which is also called a resonance, 
occurs when the two quarks created in 
the electron-positron collision do not fly 
apart, but remain bound by the strong 
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nuclear force. The energy (mass) of the 
resulting particle depends on the separa- 
tion between the quarks when they be- 
come bound, much as the energy of a hy- 
drogen atom depends on the orbital radi- 
us of the electron around the proton. The 
members of the J/psi family correspond 
to different separation distances. 

The upsilon particle is also a reso- 
nance but contains heavier quarks with 
the fifth flavor. The still undiscovered 
particle containing even more massive 
quarks with the sixth flavor will also be a 
resonance. By finding the masses of the 
other particles in their respective fami- 
lies, physicists will have a more com- 
plete and quantitative picture of the 
quark-quark interaction. Study of these 
heavier particles, accessible at PETRA 
and PEP, will be even more useful than 
the J/psi because relativistic effects are 
less important when the quarks become 
heavier, thus simplifying extraction of 
the form of the strong interaction. [An 
intermediate energy storage ring to be in 
operation at Cornell University by the 
spring of 1979 (Science, 4 November 
1977, p. 480) may be the best machine to 
study the upsilon family.] 

These and numerous other possible 
experiments constitute a busy schedule 
for the two new electron-positron stor- 
age rings, PETRA and PEP. By getting 
on line first, the German machine will 
have first crack at skimming the cream 
from an unexplored region of high ener- 
gy physics. But precisely because it is 
unexplored, physicists may find surpris- 
es that could thoroughly upset the well 
thought out program of experiments de- 
scribed above. This would not be an un- 
happy outcome. The J/psi discovery 
launched the intensely exciting age of the 
new physics. If a comparable impact 
were to result from an unexpected find- 
ing at PETRA or PEP, physicists would 
be overjoyed.-ARTHUR L. ROBINSON 
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Pierre Deligne was born in Brussels, 

Belgium, in 1944. When he was 14 an en- 
thusiastic high school teacher, M. J. 
Nijs, lent him several volumes of the Ele- 
ments of Mathematics by N. Bourbaki. 
This work develops a solid foundation 
for all of modern mathematics, in a most 
logically efficient manner, proceeding 
from the general to the particular; for ex- 
ample, the real number system is dis- 
cussed only in the fourth chapter of the 
third long book, after general topology 
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and abstract algebra have been exten- 
sively treated. In the whole treatment 
there is (except perhaps for the excellent 
historical notes) no motivation given at 
all, other than the internal logic of the de- 
velopment itself. That Deligne not only 
survived but even thrived on his ex- 
posure to such a work at such a tender 
age was perhaps already an indication of 
his genius, as well as of Nijs' good judg- 
ment. 

Thus when Deligne went to the Uni- 
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versity of Brussels he already knew the 
fundamentals of most of modern mathe- 
matics. There he learned much from 
group theorist Jaques Tits now at the 
College de France, and Tits gave him ex- 
cellent advice on his general mathemati- 
cal development. In 1965, at Tits' sug- 
gestion, Deligne went to Paris to pursue 
further his interests in algebraic geome- 
try and number theory. It would be hard 
to imagine a better place for this at the 
time. Among other activities there were 
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the seminars in algebraic geometry of Al- 
exander Grothendieck (Fields Medal, 
1966) and the lectures of Jean-Pierre 
Serre (Fields Medal, 1954), which had a 
more number-theoretical flavor. Deligne 
was strongly influenced by both these 
men. 

Deligne's association with Grothendi- 
eck during the late 1960's at the IHES 
(European Institute for Advanced Study, 
in Bures-sur-Yvette just south of Paris) 
was especially close. We personally first 
heard of Deligne in 1966 from Grothen- 
dieck, who was more impressed than 
we had ever seen him be by a young 
mathematician. At that time Deligne was 
21 and Grothendieck immediately recog- 
nized him as his equal. The significance 
of this and of their collaboration will be 
clearer if we explain the situation in alge- 
braic geometry at this time. In the 1930's 
algebraic geometry had an antiquated 
air, with many appealing charming re- 
sults but an embarrassingly handmade 
and dusty look. During the period 1940 
to 1960 several of the greatest mathema- 
ticians of this century contributed to 
building suitable foundations for alge- 
braic geometry and fitting it into the ab- 
stract conceptual framework that had by 
then been built for most of the rest of 
mathematics. After the great contribu- 
tions of Oscar Zariski now at Harvard 
University, Andre Weil, and Serre of the 
Institute for Advanced Study in Prince- 
ton, it was Grothendieck who pushed 
this program through to its ultimate logi- 
cal conclusion. Grothendieck was an un- 
tiring, implacably logical, almost fanati- 
cal force. He was guided in his thinking 
perhaps more than any other mathemati- 
cian has ever been by the desire to view 
each concept in the greatest possible de- 
gree of generality with no artificial re- 
strictions-that is, no restrictions not ab- 
solutely forced by the logic of the situa- 
tion. The result, as Grothendieck wrote 
his monumental works on the founda- 
tions of algebraic geometry, was an ut- 
ter transformation .of the subject. As he 
pursued the ultimate in generality the 
volume of the work increased exponen- 
tially, and algebraic geometry became 
a vast structure, gleaming, hard to 
grasp, overpowering. The key ideas 
seemed hidden, let alone the appealing 
artifacts of the previous century. 

Deligne mastered this structure of 
Grothendieck's seemingly without ef- 
fort, but his style was not to add a whole 
new layer of systematic development to 
the theory unless it was absolutely nec- 
essary. He preferred to find an elegant 
fundamental new idea suddenly clari- 
fying a whole area or an old problem. 
Deligne was able to use the extensive de- 
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velopments of Grothendieck as well as 
any one, but his own ideas were often 
more concise, more particular. To con- 
trast their styles metaphorically, one 
could say that Grothendieck liked to 
cross a valley by filling it in, Deligne by 
building a suspension bridge. 

During the next few years Deligne 
touched on virtually all areas of algebraic 
geometry, making extraordinary contri- 
butions. In 1970, at the age of 26, he was 
promoted to a permanent professorship 
at the IHES, the position he now holds. 
We will not try to describe his early work 
but will focus instead on his most ex- 
citing and deepest result, his proof in 
1973 of the last and hardest of Weil's 
conjectures. Fortunately this result is 
relatively easy to state in simple lan- 
guage, and it may convey an idea of the 
almost mystical flavor of the direction in 
which this frontier of mathematics is 
growing. 

One starts with a set of one or more 
simultaneous polynomial equations in 
several unknowns. This could be some- 
thing as simple as one equation in two 
unknowns, such as y2 - x3 + 1 = 0, but 
in general would be f(x, y, z, . . .) = 0, 

f2(x, y, z, ... .) = 0,.... The fi's, as 
stated, are to be polynomials, and we as- 
sume that their coefficients are whole 
numbers. The oldest question in arith- 
metic is to find, or give procedures for 
finding, all solutions in which the un- 
knowns x, y, z, . . . are whole numbers. 
But this has turned out to be intractable 
in all but some elementary cases. Anoth- 
er question is to consider the set of solu- 
tions in which x, y, z, . . . are complex 
numbers. These solutions form a contin- 
uum, or manifold, X, of a certain dimen- 
sionality, called an algebraic variety be- 
cause it is described by algebraic equa- 
tions (sometimes one adds points at in- 
finity to X to "complete" it). Such 

manifolds have been extensively stud- 
ied, and in particular certain properties 
of X are described by its so-called Betti 
numbers B, B1, B2 .... Thus Bo is the 
number of connected pieces of X, and B1 
describes how many essentially different 
loops X contains. For example, in the 
case of the single equation y2 - 

x3 + 1 = 0, X turns out to be two-dimen- 
sional (remember that we are allowing 
complex values for x and y, not only real 
values) and to be like the surface of a 
doughnut (a space called a torus). In this 
case B0 = 1, because X is connected, 
and B, = 2, because there are really two 
different ways around a torus (Fig. 1). 

There is a third type of solution to our 
equations f, = f2 = . . . = 0 that is very 
important: one tries to put the unknowns 
x, y, z, . . . equal to whole numbers, but 
requires only that the values f1(x, y, 
z, . . .) of the polynomials be divisible by 
a fixed prime number p (that is, be con- 
gruent to zero modulo p) instead of being 
0. If (x, y, z, . . .) is one such set of val- 
ues for the unknowns, then adding multi- 
ples of p to them, for example (x + 2p, 
y - 3p, z + p, . . .), gives another such 
set of values. So one can restrict x, y, 
z, ... to be one of the p whole numbers 
0, 1, 2, . . ., p - 1 and not miss any- 
thing. We then have in all only a finite set 
of values for the x, y, z, . . . to try, and 
there will be a finite number Np of solu- 
tions in the sense just described. For ex- 
ample, try the possible values 0, 1, and 2 
for x and for y, and out of the nine possi- 
bilities you will find three of them such 
that 3 divides y2 - X3 + 1. Thus in this 
case N3 = 3. With a bit more patience 
you can check N5 = 5, N2 = 2, and 
N7 = 3 for the same equation. 

We can now state a famous result of 
Weil, which is the leitmotiv of this whole 
development. Take the case of one irre- 
ducible polynomial equation in two vari- 
ables. Also modify the number Np slight- 
ly to take into account infinite solutions 
and singularities; we omit describing 
this. Then 

INp - (p + 1)1-< B /p (1) 

where B1 is the first Betti number of the 
complex variety associated to the same 
equation. This variety will be like the 
surface of a doughnut with a certain 
number of holes, and B1 is twice the 
number of holes. The point that is so 
startling here is that this sets up a con- 
nection between the solutions modulo p 
with whole numbers and the geometry of 
the continuum of complex solutions. 
What other cases can one find of such a 
miraculous connection between arith- 
metric and geometry? This question 
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tantalizes many mathematicians today. 
What should one expect for a general 

set of equations of the type we are con- 
sidering? Weil guessed the answer in 
1949, and Deligne proved that his guess 
was correct 24 years later. To explain 
this guess we must view the number Np 
described above in a more sophisticated 
way, as the number of solutions to our 
equations in the finite field with p ele- 
ments. For each positive integer r there 
is an essentially unique finite field withpr 
elements, and if Npr denotes the number 
of solutions with x, y, z, . . . in that field, 
Weil conjectured that for each prime p 
there should exist complex number aij 
such that for each r 

n Bj 

Npr (-l 1 ) ot. (2) 
j=1 i=1 

where n is the dimension of the space X 
of complex solutions and the Bj are the 
Betti numbers of X. Moreover the abso- 
lute values of the numbers xij should be 
given by 

laoii = pi/2 (3) 

(In this brief statement of Weil's con- 
jectures we have exaggerated a bit: one 
must desingularize X and add some 
points at infinity, and make the corre- 
sponding modifications in counting the 
solutions in finite fields; also one must 
exclude a finite set of primes p, those for 
which X does not have "good reduction 
modulo p.") In the case of one equation 
in two unknowns, n = 2, Bo = B2 = 1, 
xQ = 1, and x12 =p, so that Eq. 1 is a 
consequence of Eqs. 2 and 3. A formula 
of the same type as Eq. 2 was proved by 
Bernard Dwork of Princeton University 
in 1959, and Eq. 2 was proved by 
Grothendieck in 1965. However, Eq. 3 is 
much harder, and it is this result for 
which Deligne is justly famous. Clearly, 
Eqs. 2 and 3 strengthen and confirm the 
link between the arithmetical problem of 
solving polynomial equations modulo p 
and the geometry of their complex solu- 
tions. 

To see how Deligne proved Eq. 3, we 
must go back again to Grothendieck. It 
was in order to prove a formula like Eq. 
2, and with the hope of using it to prove 
Eq. 3, that Grothendieck began doing al- 
gebraic geometry. Weil had pointed out 
that Eq. 3 could be obtained as a "Lef- 
schetz fixed point formula," if one had a 
"cohomology theory of varieties in char- 
acteristic p" (indeed Npr is just the num- 
ber of fixed points of the transformation 
Fr, where F is the Frobenius map of 
the set of solutions in characteristic p 
into itself). At the start of his work 
Grothendieck had guessed that such a 
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Fig. 1. The two ways to go around a torus. 

cohomology theory could be obtained by 
systematically confusing the two mathe- 
matical senses in which the word cov- 
ering is used (Fig. 2). This was the kind 
of abstract idea at which Grothendieck 
excelled, and in this case he was abso- 
lutely right. With the aid of Michael Ar- 
tin of the Massachusetts Institute of 
Technology and Jean Louis Verdier of 
the University of Paris he constructed 
a new cohomology theory, known as 
"etale cohomology," yielding the num- 
bers xij in a natural way. This theory was 
one of the building blocks of Deligne's 
proof. 

The other main ingredient came from a 
little-known prewar (1939) paper of Rob- 
ert Rankin in the Proceedings of the 
Cambridge Philosophical Society, in 
which Rankin made some progress on an 
analogous conjecture of the Indian math- 
ematician Srinivara Ramanujan, by a 
squaring trick. It is hard to imagine two 
mathematical schools more different in 
spirit and outlook than were those of the 
British analytic number theorists in the 
1930's and of the French algebraic geom- 
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Fig. 2. (a) Covering of type I. A set of pieces 
that fill the whole. In this case, an oval region 
covered by nine smaller oval regions, two of 
which are shaded. (b) Covering of type II. 
One space lying smoothly over another. In 
this case, an infinite spring covering a closed 
loop. 

eters in the 1960's. That Deligne's proof 
is a blend of ideas from both is an in- 
dication of the universality of his mathe- 
matical taste and understanding. He had 
a clue to the connection because already 
in 1968 he had shown that Weil's con- 
jectures implied Ramanujan's. The ideas 
behind this were due to the Japanese 
mathematicians Kuga, Sato, Shimura, 
and Ihara, but it was Deligne who had 
the technical power to carry them out, 
and it was Serre who realized this and 
urged him to do it. At any rate, Deligne 
saw that Rankin's method could be un- 
derstood geometrically and could be 
greatly extended. Combining this with a 
very delicate analysis of the cohomology 
via so-called Lefschetz pencils, using 
also a theorem of David Kazhdan now at 
Harvard University and Margoulis (one 
of this year's Fields Medalists), Deligne 
put together his sensational proof of 
Weil's conjecture: Besides its own in- 
trinsic interest, this result has also al- 
ready yielded several important con- 
sequences in number theory and algebraic 
geometry. 

Since 1973 Deligne's center of interest 
has shifted slightly from geometry to- 
ward number theory. He has made sev- 
eral key contributions to problems con- 
nected with the vast program of Robert 
P. Langlands of the Institute for Ad- 
vanced Study to relate the way in which 
the numbers xij mentioned above vary 
with p to the theory of automorphic 
forms. 

Deligne's economy and clarity of 
thought are amazing. His writings con- 
tain few unnecessary words, little or no 
redundancy. The ideas are there, simply 
and clearly stated, but so densely that al- 
most every phrase is relevant. 

Deligne's nonmathematical interests 
and activities exhibit the same sim- 
plicity. For years he has cultivated a 
large vegetable garden in the rich soil of 
the housing project of the IHES. He en- 
joys organizing Easter egg hunts for the 
children living there. For transportation 
he prefers a bicycle to a car, and his va- 
cations are usually spent hiking. There is 
nothing artificial about him. He is self- 
assured but modest and able and willing 
to discuss almost any mathematical sub- 
ject with anyone. There are few subjects 
that his questions and comments do not 
clarify, for he combines powerful tech- 
nique, broad knowledge, daring imagi- 
nation, and unfailing instinct for the key 
idea. 
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