
PLUTO, is a thoroughly tested in- 
strument, having been one of two detec- 
tors used on the DORIS storage ring. 
The two others will need several weeks 
or possibly months of debugging before 
being ready for full-time data taking. The 
fourth and fifth detectors are under con- 
struction and are expected to be in place 
by the coming spring. 

PEP, coming on line a year behind 
PETRA, may get scooped on some ma- 
jor new discoveries (Fig. 3). Researchers 
at SLAC will have two already proven 
detectors (Mark II and DELCO) in place 
by the October 1979 opening date in ad- 
dition to one all-new instrument that will 
need to be broken in. Three other new 
detectors will be ready about 6 months 
later. 

A search for new elementary particles 
containing heavier quarks could be one 
of the earliest of findings of this type. 
With the experience of the J/psi in hand, 
physicists now believe that an increase 
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in the ratio of the probability of produc- 
ing hadrons to the probability of produc- 
ing muon pairs is a signal of a new quark. 
Since an increase in this ratio is a thresh- 
old process, even if the resonance should 
be missed, observation of such an in- 
crease would tell experimenters to re- 
measure at lower, perhaps only cursorily 
scanned, energies. But, points out Wolf- 
gang Panofsky, director of SLAC, other 
effects also can contribute to an increase 
in this ratio, thus requiring precision 
measurements. Even when a storage ring 
is operating at full performance, it takes 
hundreds of hours to gather data for one 
point on a high-precision energy scan. 

Thus, given the necessity of breaking 
in PETRA and of debugging its new de- 
tectors, it could be some time, say ob- 
servers, before results of experiments re- 
quiring such high-precision scans are 
forthcoming. At present, DESY phys- 
icists are experiencing difficulty in pack- 
ing large numbers of electrons and posi- 
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trons into their respective bunches, a 
problem that goes under the general 
heading of beam instability. Such prob- 
lems have been encountered and solved 
in other machines in the past, and 
DESY's Voss emphasizes that PETRA 
is well within its planned timetable for 
storing high electron-position currents at 
high energies. Nonetheless, until beam 
instability effects are overcome, many 
types of experiments will not be possible. 

Since beam instabilities are a fact of 
life in storage rings, physicists operating 
PEP may well run into similar difficulties 
in a year's time. If they are lucky and 
avoid such problems, or if they are able 
to incorporate directly the solutions that 
their German counterparts come up with, 
experimenters using PEP may not find 
themselves so far behind after all. In any 
case, all observers agree that there is 
more than enough "physics" for both 
machines to lead long and productive 
lives.-ARTHUR L. ROBINSON 
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Charles Louis Fefferman was born on 

19 April 1949 in Washington, D.C. His 
remarkable development was that of a 
child prodigy. At the age of 14 he entered 
college at the University of Maryland, 
where understanding professors guided 
his education. He went to graduate 
school at Princeton University, where he 
received the Ph.D. when he was 20 years 
old. At the age of 22 he became a full 
professor at the University of Chicago 
(the youngest full professor at a U.S. col- 
lege), and a year later he moved to 
Princeton University, where he is now 
working. His outstanding achievements 
were recognized by a number of awards 
before he received the Fields Medal. In 
1971 he received the Salem Prize and in 
1976 the Waterman Award of the Nation- 
al Science Foundation. 

Fefferman works on various aspects of 
analysis, such as harmonic analysis, par- 
tial differential equations, and several 
complex variables. These are relatively 
old subjects and the problems in these 
fields are notoriously complicated and dif- 
ficult. One of Fefferman's major contri- 
butions is the solution of a problem in 
the theory of functions of several com- 
plex variables. In this theory, one stud- 
ies mappings given by holomorphic 
(complex analytic) functions of several 
variables and asks which regions in the 
space of n complex variables can be 
mapped into each other-that is, are bi- 
holomorphically equivalent. In contrast 
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to the situation in the theory of one com- 
plex variable, simply connected regions 
are generally not equivalent in two or more 
variables. For example, it has been known 
for a long time that the inside of a sphere 
zil12 + z212 < 1 is not biholomorphically 
equivalent to a "bicylinder" Izll < 1, 
Iz21 < 1. In short, regions are much more 
"rigid" under biholomorphic mappings in 
two or more variables than they are in 
one variable. Usually one requires these 
regions to be "pseudoconvex." 

Now it is natural to expect that a bi- 
holomorphic mapping that takes one 
such pseudoconvex region with a 
smooth boundary into another will also 
be smooth up to the boundary. This 

problem of the boundary smoothness is 
as basic as it is simple to state. Never- 
theless, it is a very difficult problem on 
which several prominent mathematicians 
worked without success. This difficulty 
stems from the rigidity mentioned above 
which makes ineffective methods that 
are applicable to one complex variable. 
In 1974 Fefferman succeeded in proving 
the theorem on boundary smoothness. 
This makes it now possible to study 
the mapping on this boundary. His paper 
was a very difficult one, and various 
researchers have tried to simplify the 
proof, thus far without success. A num- 
ber of papers have appeared in which 
Fefferman's theorem is used. Without 
question, this result is important to the 
theory of several complex variables. 
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Related to this work is a later discov- 
ery about the boundaries of such biholo- 
morphically equivalent regions. By ex- 
tending these odd-dimensional bounda- 
ries by one dimension, he was able to in- 
troduce an indefinite metric (Lorentz 
metric) that changes only by a factor un- 
der biholomorphic transformations. In 
particular, the null geodesics-the ana- 
logs of light rays in relativity theory- 
form an invariant set of curves on the 
boundary. These curves had been dis- 
covered before but by a completely 
different method. Thus Fefferman un- 
expectedly introduced the differential 
geometric concept of an indefinite met- 
ric into complex function theory. Many 
of these concepts are still so new that 
one cannot predict where they will lead. 

Fefferman's earlier studies were with 
harmonic analysis, a subject that deals 
with questions related to Fourier in- 

tegrals and Fourier series. Problems in 
this area are very delicate and difficult, 
and progress on them is correspondingly 
slow. For example, it was known for a 
very long time that even for continuous 
functions Fourier series need not con- 
verge everywhere. This led to the need 
for other convergence concepts, and 
every student of mathematics now learns 
that the Fourier series of a function 
which, when squared, is integrable (L2 
function) converges in the space of L2 
functions. This result was proved as 
early as 1907, but the question of wheth- 
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er the Fourier series of such an L2 func- 
tion converges almost everywhere-that 
is, everywhere but a "small" excep- 
tional set-remained a nagging one. This 
question was finally answered, in the 
affirmative, only in 1966 by the Swedish 
mathematician L. Carleson. 

Convergence questions for Fourier se- 
ries are usually studied for functions of 
one variable, and it is tempting to believe 
that functions of several variables be- 
have similarly as far as their Fourier se- 
ries are concerned. This is by no means 
the case, as Fefferman discovered. 

Consider, for example, the Fourier 
series of a function of two variables, 

f(x,y), of period 2r in x and in y. It is a 
double series 

C rmn i(mx + ny) 

where m and n run over all integers. To 
study the convergence it is natural to re- 
strict the summation to all integers inside 
a rectangular Im I M, In I < N, and then 
study the convergence of the corre- 
sponding trigonometric polynomial 

PMN= , Cmn eixny 
Iml - M Inl < N 

as M and N tend to oo. Fefferman showed 
that for rather simple continuous func- 
tions the PMN need not converge almost 
everywhere even if the ratios M/N and 
N/M are bounded. This result came as a 
complete surprise. Remarkably, if 
N = M-that is, in the case of a 
square-they do converge almost every- 
where. Another unexpected fact con- 
cerns the trigonometric polynomials 
Pp(x, y) obtained by summing the Fourier 
series over the integer pairs belonging to 
the disk 

n2 + m2 < R 

It is well known that for an L2 function 
f(x,y) the PR tend tof in the space of L2 
functions, but Fefferman found that the 
corresponding statement is false for 
functions in LP, 1 <p< oo, if p $ 2. 
(These are functions that, when raised to 
the pth power, are integrable.) 

For the proof of these results Fef- 
ferman employed new ideas and related 
them to an intriguing geometric problem, 
called Kakeya's needle problem: What is 
the smallest area of a region in the plane 
in which a needle (line segment) of length 
1 can be continuously turned by 360? in 
such a way that at the end of the motion 
the needle occupies the original posi- 
tion? Both translations and rotations are 
allowed. The first guess is a circle of 
radius 1/2 and area -r/4. But one can do 
even better with a convex region, name- 
ly the equilateral triangle of area 1/3-. It 
10 NOVEMBER 1978 

came as a great surprise when Besi- 
cowitch in 1928 showed that there are re- 
gions of arbitrarily small area with this 
property; these regions are not convex 
but very "spiky." Somebody trying to 
turn a long beam in a dense forest will 
appreciate this problem and its solution. 
Fefferman brought this geometric fact to 
bear on the convergence question of 
two-dimensional Fourier series. 

The examples discussed above give 
only a superficial idea of Fefferman's 
deep investigations on Fourier series. 
The mathematically versed reader will 
be interested in the sweeping survey ar- 
ticle which Fefferman presented at the 
International Congress of Mathemati- 
cians in Vancouver, British Columbia, in 
1974. 

Another of Fefferman's discoveries 
deals with functions of "bounded mean 
oscillations" (BMO functions). To de- 
scribe the role of these functions, it is 
necessary to introduce some concepts. 
In functional analysis one works with 
various function spaces, called Banach 
spaces. An example of a Banach space is 
the periodic functions f(x) of period 2rT 
for which the integral 

I27 

Jo 
jf(x)IPdx 

is finite. For p - 1 these functions form 
the elements of the LP spaces. Closely 
related are the Hardy spaces Hp, which 
consist of the LP functions that are 
boundary values of functions that are 
analytic inside the circle Izl < 1. 

There is a general abstract procedure 
by which one associates with any Ba- 
nach space another Banach space called 
a dual space. It has been known for a 
long time that the dual of LP is Lq, where 
q = p/(p - 1). Similarly, the dual space of 
H" is Hq, provided p > 1. Although the 
dual space of L1 can, in a rather elemen- 
tary way, be characterized as the space 
L" of all bounded measurable functions, 
it remained a mystery to describe the 
dual space of H1. By analogy to L1 one 
might expect that this space consists of 
the boundary values of bounded analytic 
functions; this guess turns out to be 
false. 

In 1971 Fefferman cleared up this mys- 
tery; he showed that the elements of this 
space are actually the same BMO func- 
tions that 10 years earlier had been dis- 
covered by F. John in his fundamental 
studies motivated by elasticity theory. 
The definition of these BMO functions is 
somewhat complicated. They are func- 
tionsf(x) for which the mean oscillation 

h-a if(x) - A ,bldx 
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from a constant average Aab over an in- 
terval a < x < b is bounded for all pos- 
sible intervals. These functions need not 
be bounded; a typical example of an un- 
bounded BMO function is f(x) = loglxl. 
However, these functions are large only 
on relatively small sets. It was this prop- 
erty that was important in John's work. 
He considered elastic materials subject 
to small strains and showed that, as one 
would expect, they suffer small dis- 
placements. The derivatives of these dis- 
placements may be unbounded, but they 
are large only in small sets. In fact, the 
derivatives are BMO functions-for 
which Fefferman found a completely dif- 
ferent description, and thus added them 
to the arsenal of function spaces. 

There are a number of other areas to 
which Fefferman has contributed in an 
essential way, such as the theory of par- 
tial differential equations. Here he used 
deep ideas of Fourier analysis to settle 
some difficult problems about the exis- 
tence of solutions of differential equa- 
tions. In this as in his other work one no- 
tices a general trait: not to focus narrow- 
ly on a special problem, but to view it 
and attack it on a broad front. He con- 
nects problems of complex analysis with 
those of differential geometry, such as 
the geodesics that entered complex anal- 
ysis, in a most startling way. He com- 
bined Fourier analysis with partial dif- 
ferential equations in a new way. His 
versatility and ability to bring together 
and master different branches of mathe- 
matics may well be one reason for the re- 
markable progress of Fefferman's work. 
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