
over the outer margins of the taste bud. 
With increasing cornification of the 
tongue, a narrow channel forms between 
the taste pit and the oral environment. 
The number of taste buds per fungiform 
papilla also increases from one at ap- 
proximately 84 days, to two at approxi- 
mately 100 days of gestation, to three or 
more in lambs and adults. It is difficult to 
correlate these light microscopic ana- 
tomical changes with the electrophysi- 
ological data without the added insight 
that could be provided from ultrastruc- 
tural studies, including observations 
on taste bud cell membranes and syn- 
apses. 

From our studies of responses from 
ST chemosensitive units in fetal, new- 
born, and adult sheep we conclude that 
before structural development of taste 
buds is complete, taste responses can be 
recorded in the central nervous system; 
functional changes in range of respon- 
siveness to salts and acids accompany 
morphological changes in taste buds. 
Cells in younger fetuses usually respond 
to lingual stimulation with NH4C1, KCI, 
and citric acid only; more units respond 
to HCI as development progresses, and 
sensitivity to NaCI and LiCl first appears 
in older fetuses. Therefore, taste re- 
sponses seem to develop in a particular 
sequence, not randomly. These changes 
in the range of responsiveness may relate 
to maturation of taste receptor sites. 
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neurons in the lateral hypothalamus. 

Food and water intake (hunger and 
thirst) are thought to be regulated by ex- 
citatory and inhibitory mechanisms in- 
trinsic to the hypothalamus. This idea is 
based on an extensive body of research 
demonstrating that ingestive behavior is 
abolished or exaggerated by certain hy- 
pothalamic lesions and that food or wa- 
ter intake can be elicited or inhibited by 
electrical stimulation or microinjections 
of putative neurotransmitters and related 
compounds into the diencephalon (1). 
The "hypothalamocentric" interpreta- 
tion has been seriously questioned in 
recent years because (i) it is not clear 
that the effects of hypothalamic lesions 
or stimulation can be ascribed to a direct 
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Fig. 1. Sections (50 .tm) through the brain of a 
kainic acid-treated rat of group 7. The area 
damaged by the injections shows a loss of 
neurons and increased glia. This animal was 
aphagic and adipsic when killed 10 days after 
the injection. Cresyl violet stain; IC, internal 
capsule; F, column of the fornix; M, mammil- 
lothalamic tract. 
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effect on soma and dendrites rather than 
fibers of passage, and (ii) the behavioral 
effects of hypothalamic lesions or stimu- 
lation are not specific to ingestive behav- 
ior (2). 

The focus of the recent criticism has 
been on the lateral hypothalamus be- 
cause this region is relatively cell-poor 
and is traversed by numerous diffuse fi- 
ber systems, several of which originate or 
terminate in areas of the brain (such as 
the globus pallidus, substantia nigra, and 
ventral tegmentum) where electrolytic or 
more selective chemical lesions produce 
effects on behavior that are similar to 
those seen after damage to the lateral hy- 
pothalamus (3). 

In all cases, severe sensory-motor dis- 
turbances (lack of endogenous arousal, 
absent or impaired responsiveness to ex- 
ternal stimuli, and akinesia) are preva- 
lent throughout the period when the ani- 
mals are aphagic and adipsic. Although it 
was suggested (4) that the sensory-motor 
impairments failed to correlate with the 
severity and persistence of the aphagia 
and adipsia syndrome, more recent in- 
vestigators (5) have demonstrated paral- 
lel recovery functions and concluded 
that a lack of endogenous arousal or im- 
paired arousal response to external or in- 
ternal stimuli might be responsible for or 
contribute to the aphagia and adipsia 
syndrome. 

We have investigated the role of some 
of the major fiber systems which course 
through the lateral hypothalamus by 
means of surgical knife cuts (6, 7). The 
results of these experiments indicate that 
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Aphagia and Adipsia After Preferential Destruction of 

Nerve Cell Bodies in Hypothalamus 

Abstract. Microinjections of the excitatory neurotoxin kainic acid into the lateral 
hypothalamus of rats produced a period of aphagia and adipsia. Kainate-treated 
rats displayed transient motor effects during thefirst hours after the injection but did 
not show the persisting sensory-motor and arousal disturbances typically observed in 
animals with electrolytic lesions in this part of the hypothalamus. Histological exam- 
ination revealed a significant reduction in the number of nerve cell bodies in the 
lateral hypothalamus. Silver-stained material indicated no evidence of damage to 
fiber systems passing through the affected region. Assays of dopamine in hypothala- 
mus, striatum, and telencephalon did not indicate significant differences between 
experimental and control animals. These results are in agreement with recent reports 
of the anatomical and biochemical effects of intracerebral kainic acid injections and 
suggest that the observed effect on feeding behavior is related to the destruction of 
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Table 1. Effect of kainic acid injections into the lateral hypothalamus on food and water intake. 
In groups 1 to 6 and 8 the infusions were delivered over 1 minute. In group 7 kainic acid was 
infused over 12 to 15 minutes in a smaller volume to avoid spread to adjacent brain structures. 
Brains from animals injected unilaterally (groups 2, 4, and 6) were stained by the Fink-Heimer 
method to determine more clearly the damage associated with the behavioral effect. 

Bilateral 
Kainic Volume (B) or Days of aphagia Days of adipsia 

Group N acid injected laeral (U)- lateral (U) 
(Kg) @(d) injection Mean Range Mean Range 

1 11 1.0 1.0 B 5.0 3-10 3.5 2-10 
2 4 1.0 1.0 U 1.0 1 1.3 1-2 
3 9 1.0 0.5 B 3.3 2-7 2.7 0-7 
4 3 1.0 0.5 U 0.7 0-2 1.0 1-2 
5 3 1.0 0.25 B 1.7 1-3 1.7 0-4 
6 3 1.0 0.25 U 1.7 1-2 1.7 1-2 
7 8 0.5 0.10 B 7.5 2-10 7.5 2-10* 
8 2 t B 0.Ot 0.0 

*Three animals were killed on day 10 before recovery of voluntary food or water intake. tVehicle injec- 
tion control. tFood intake of control animals did not differ significantly from preoperative baseline. 

any significant interference with afferent 
or efferent connections of the striatum 
results in aphagia and adipsia as well as 
various sensory-motor disabilities that 
may or may not contribute to the ob- 
served impairments in ingestive behav- 
ior. We also find that individual knife 
cuts often selectively interfere with the 
behavioral response to specific gluco- 
privic or hydrational challenges, which 
suggests that neural mechanisms that 
may or may not originate in the lateral 
hypothalamus but course through it are 
much more specifically related to the 
regulation of food and water intake than 
recent hypotheses have suggested. 

To investigate what role neurons in- 

trinsic to the lateral hypothalamus play 
in the regulation of ingestive behavior, 
intracranial injections of kainic acid were 
administered to male rats. Kainic acid, a 
structural analog of glutamate, preferen- 
tially destroys cell somata without dam- 
aging axons of passage (8). This report 
summarizes the effects of slow infusions 
of small quantities of this substance into 
the lateral hypothalamic region (9). 

All kainic acid injections produced 
transient motor effects beginning ap- 
proximately 20 minutes after the injec- 
tion and lasting approximately 5 hours 
(10). Bilateral injections resulted in vig- 
orous treading of both forelimbs, tilting 
up of the head, and occasional rolling 

,. 
',,3r I~- 4k.1.. 

Fig. 2. (A and B) Lateral hypothalamus contralateral (A) and ipsilateral (B) to a kainic acid 
injection (2 cug in 1 ,ul of CSF, 6-day survival time). Intact cells (arrows) are in clear evidence 
contralateral to the injection (A), while an absence of neurons and intense glial proliferation 
characterizes the injection site (B). (C and D) The head of the caudate nucleus contralateral (C) 
and ipsilateral (D) to the kainic acid injection (1 Ig in 0.5 /l of CSF, 4-day survival time). Only 
minimal degeneration debris associated with fibers traversing this nucleus is present; this in- 
dicates minimal damage to the dopamine fibers, which innervate the caudate and pass through 
the lateral hypothalamic area. (E and F) Lateral septal nucleus contralateral (E) and ipsilateral 
(F) to the kainic acid injection. Only background levels of degeneration are seen contralateral to 
the injection (E), with heavy fiber and terminal degeneration occupying this nucleus on the side 
of the injection (F). Calibration, 50 Axm. 
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motions along the long axis of the body 
that were initiated by head rotation. 
Forelimb treading was reduced when the 
animal was held with the head higher 
than the body. Unilateral injections pro- 
duced treading of a single forepaw and a 
head tilt contralateral to the injection 
site. Intermittent propeller-like motions 
of the tail and body rolling in the direc- 
tion contralateral to the injection were 
also observed. All signs of overt motor 
disturbances had completely disap- 
peared 12 hours after the injection. After 
this transient phase of apparent motor 
excitation, there were no indications of 
motor dysfunctions, somnolence, or im- 
paired arousal in response to environ- 
mental stimuli. In fact, when placed into 
an open field together with other experi- 
mental and control rats (including rats 
that were akinetic as a result of elec- 
trolytic lesions in the dorsolateral hypo- 
thalamus), the kainate-treated animals 
explored avidly, interacted apparently 
normally with conspecifics, and dis- 
played exaggerated startle responses. 

The results of kainic acid injections in- 
to the lateral hypothalamus on food and 
water intake are summarized in Table 1. 
Animals in groups 1, 3, and 5 received 
bilateral injections of 1 gug of kainic acid 
in varying volumes of artificial cerebro- 
spinal fluid (CSF). Animals in group 1, 
which received a relatively large volume 
(1 u1) over approximately 1 minute, were 
subsequently aphagic and adipsic for 2 to 
10 days. Smaller volumes delivered over 
the same infusion period (groups 3 and 5) 
produced significant but less persistent 
effects. The most persistent aphagia and 
adipsia (mean, 7.5 days) were obtained 
when a smaller dose of kainic acid (0.5 
jug) dissolved in only 0.1 Iul of CSF was 
very slowly infused over 12 to 15 min- 
utes (group 7). 

Examination of the histological mate- 
rial by light microscopy (11) revealed 
that when large volumes were infused 
over 1 minute (group 1) the damaged 
area (as indicated by glial proliferation 
and nerve cell loss) was not confined to 
the lateral hypothalamus, but included 
portions of the dorsomedial hypothala- 
mus and subthalamic and thalamic nu- 
clei. The smaller volumes injected in 

groups 3 and 5 produced more limited 
damage but tended to spread dorsally 
along the cannula track and thus destroy 
only part of the lateral hypothalamic 
area. In group 7, unpredictable spread 
was avoided by use of small volume and 
slow infusion rate. This procedure pro- 
vided excellent localization of the visible 

consequences of the injection within the 
lateral hypothalamic area (Fig. 1). Kainic 
acid injection markedly reduced the 
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number of nerve cell bodies in the lateral 
hypothalamic region (Fig. 2). 

Fink-Heimer silver staining of tissue 
obtained from animals that received uni- 
lateral injections was undertaken to col- 
lect data on the hypothalamic projec- 
tions that may have been affected by the 
kainic acid lesion and to estimate the 
amount of damage done to fiber tracts 
traversing the lesion site. No significant 
fiber degeneration was detected in the 
fornix, internal capsule, and mamillo- 
thalamic tract. Fibers positioned on the 
lateral fringe of the medial forebrain 
bundle at the level of the lateral hypo- 
thalamus comprise portions of the as- 
cending dopamine systems, which in- 
nervate the neostriatum, olfactory tu- 
bercle, and other forebrain structures. 
Scattered degeneration was observed, in 
some cases, in these structures, but we 
could find no differences between kainic 
acid-treated, vehicle-injected, and unin- 
jected implanted controls (Fig. 2). Thus, 
we have no evidence that dopaminergic 
axons of passage were significantly af- 
fected by the kainic acid injection. One 
forebrain structure that did exhibit heavy 
terminal degeneration was the lateral 
septal nucleus (Fig. 2, E and F). This 
pattern is consistent with autoradio- 
graphic data tracing the primary ascend- 
ing projections of the lateral hypothal- 
amus (12). 

In view of recent suggestions (5) that 
some or all of the effects of lateral hypo- 
thalamic lesions on food and water in- 
take might be due specifically to an inter- 
ruption of the dopaminergic nigrostriatal 
projection system, the effects of kainic 
acid injections on brain dopamine were 
assessed. We selected ten animals that 
had been aphagic and adipsic for 3 to 10 
days after intrahypothalamic injections 
of 0.5 ,ug of kainic acid in 0.1 Itl of ve- 
hicle and ten unoperated controls and 
dissected their brains into hypothala- 
mus, striatum, and telencephalon (these 
animals are not included in Table 1 be- 
cause no histological data were ob- 
tained). The three regions were then as- 
sayed (13) for dopamine. The results of 
the assay indicated no significant damage 
to dopaminergic projections to any of the 
three regions examined. The mean dopa- 
mine concentrations (nanograms per 
gram of tissue) ? standard error were as 
follows: in hypothalamus, 186.3 ? 19.1 
in treated animals and 126.4 + 20.8 in 
controls; in striatum, 8582.8 + 501.7 in 
treated animals and 8648.1 ? 432.8 
in controls; and in telencephalon, 
584.7 + 40.4 in treated animals and 
617.3 + 27.1 in controls. 

Our results are in good agreement with 
earlier reports (8) of cytological and bio- 
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chemical effects of intracranial injections 
of kainic acid that have indicated a selec- 
tive destructive effect on neuronal cell 
bodies. Taken together, our histological, 
biochemical, and behavioral results are 
consistent with the suggestion that apha- 
gia and adipsia produced by kainic acid 
injections are related to the selective de- 
struction of lateral hypothalamic neu- 
rons, whereas the behavioral depression 
associated with the classic lateral hypo- 
thalamic syndrome may be related to in- 
cidental interruption of the nigrostriatal, 
pallidonigral, or other pathways passing 
through this region. 
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