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The Fields Medals (I): Relating the Continuous and the Discrete 
The highest award to which a mathematician can aspire is the Fields Medal, an award comparable in many respects to a Nobel 

Prize in the prestige it confers. J. C. Fields, who set up a trust for the gold medals that constitute the award, said only that they 
should be made "in recognition of work already done and as an encouragement for further achievements on the part of the 
recipient." This has been interpreted to mean that the medals should be given to young mathematicians (generally those under 
the age of 40), a tradition that has been closely followed since the first two medals were awarded in 1936. The Fields Medals are 
given out only every 4 years, at the quadrennial convening of the International Congress of Mathematicians. This year, Fields 
Medals were presented to Gregory A. Margoulis of the Soviet Union, Daniel Quillan of Massachusetts Institute of Technology, 
Charles Fefferman of Princeton University, and Pierre Deligne of the Institute des Hautes Etudes Scientifiques in France. 

Gregory A. Margoulis was awarded 
the Fields medal for his pathbreaking 
contributions that shed light on a struc- 
ture linking the two oldest and most fun- 
damental concepts in mathematical 
thought-the continuous and the dis- 
crete. In particular, he discovered the in- 
terrelations between continuous mathe- 
matical structures known as Lie groups 
and their discrete substructures known 
as lattice subgroups. 

About Margoulis' biography, sketchy 
information is available. He was born in 
Moscow in 1946. His father was a mathe- 
matician, and Gregory showed great in- 
terest in mathematics and chess. Al- 
though he became an outstanding chess 
player as a teen-ager, he gave up the 
game when he entered Moscow Univer- 
sity. He received a candidate's degree, 
the equivalent of our Ph.D., at the uni- 
versity, his adviser being Professor Ja- 
kov G. Sinai. Margoulis has not yet re- 
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ceived his doctor's degree, which is a 
prerequisite for appointment to a full 
professorship in the Soviet Union. He 
now occupies the position of research as- 
sociate at the Institute for Transmission 
of Information in Moscow. He is married 
and has a 5-year-old son. 

Margoulis' first outstanding contribu- 
tion was in solving a conjecture posed by 
Atle Selberg of the Institute of Advanced 
Study in Princeton. Selberg, a Norwe- 
gian who won a Fields medal in 1950, 
speculated about the nature of structures 
known as lattice subgroups of continu- 
ous groups. A lattice subgroup can be 
thought of as a scaffolding, such as the 
scaffolding of a building. Selberg con- 
jectured that apart from some ex- 
ceptions, all lattice subgroups are arith- 
metic, with the variables taking on only 
integral values. Thus these subgroups, 
which occupy a prominent role in al- 
gebra, geometry, complex variable theo- 
ry, and number theory, and are examples 
of discrete phenomena, inherit their dis- 
creting from the integers. 

In 1960, Selberg began an assault on 
the structure of these subgroups. Signifi- 
cant advances were made by others as 
well, including myself and Andr6 Weil of 
France and the Institute for Advanced 
Study. The analyses of the problem 
seemed to split in two directions: one di- 
rection involved non-cocompact lattices 
and the other involved cocompact lat- 
tices (Fig. 1). 

In 1968 D. A. Kazhdan (now a profes- 
sor at Harvard) and Margoulis made a 
brilliant breakthrough in the case of non- 
cocompact lattices in matrix groups. 
They proved the existence of a nontrivial 
unipotent element, which had been con- 
jectured by Selberg. This is an element 
whose matrix has the form 

1 * * . ..* 

0 1 * *. 

0 0 1 * 

0 0 ... 1 

with respect to some basis. From 1969 to 
1974 Margoulis exhibited his extraordi- 
nary power in extracting from the exis- 
tence of unipotent elements in non-co- 
compact lattices successively more and 
more deeply structured facts, until at last 
he proved Selberg's outstanding con- 
jecture dealing with the arithmeticity of 
non-cocompact lattices in groups. 

Parts of the latter development were 

Fig. 1. A graph of R2. A multidimensional ver- 
sion of a continuous group with a discrete 
subgroup analogous to Z in R is Z2 in R2, or 
more generally Zn in Rn, where n is any whole 
number. For example, R2, the set of all or- 
dered pairs (x, y) with x andy in R, can be pic- 
tured as the set of all points in the plane of a 
sheet of graph paper, and Z2, the set of all 
(x,y) with x and y in Z, can be pictured as the 
set of all points with integral coordinates- 
that is, the crossing points of the vertical and 
horizontal lines of the (infinitely extended) 
graph paper. The example F = Z" and 
G = R" satisfies one more significant condi- 
tion-finite covolume. There is a region U of 
finite area if G = R2 or finite volume if 
G = Rn (n - 3) such that G = U + F; that is, 
each g in G can be expressed as g = u + y 
with u in U and y in F. One defines a lattice 
subgroup of a continuous group G as a dis- 
crete subgroup of finite covolume. If the sub- 
set U in the finite covolume condition can be 
taken to be a set of finite diameter, one calls 
the lattice cobounded (or more commonly, 
cocompact). In the example of Z2 in R2, Z2 is a 
cocompact lattice subgroup of R2. 
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done later, independently, by M. S. Rag- 
hunathan of Tata Institute in Bombay af- 
ter a comparably long analysis. 

At this stage however, the case of co- 
compact lattices still loomed before the 
international community of researchers 
as a blank wall. In 1974, in a brilliant 
stroke, Margoulis realized how to scale 
that wall. In 1965, I had introduced a 
strategy for solving a related problem: if 
one starts with a particular lattice, is 
there only one group that could contain 
that lattice and is there only one possible 
location for that lattice in the group? In a 
project extending until 1973, I succeeded 
in proving that the answer is "Yes." Ac- 
cording to Margoulis, my proof was of 

special interest because of its new con- 
ceptualization of the problem and be- 
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cause it introduced, for the first time, the 
use of ergodic theory in its analysis. 

Then Margoulis took a bold step in his 
analysis of cocompact lattices. He took a 
lattice in one setting and considered its 
(possibly degenerate) image in another 
setting. He then used a mixture of al- 
gebra, analysis, and number theory to fi- 
nally solve the problem of the structure 
of these lattices. Actually, his results ap- 
ply not only to lattices in continuous 
group but more generally to lattices in 
other sorts of groups as well, specifically 
to lattices in algebraic groups over either 
R or Qp for any prime number p. 

When I lectured on Margoulis's results 
at Harvard in 1974, David Mumford, a 
Fields medalist in that year, entitled the 
talk "Recent breathtaking results of G. 
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A. Margoulis." This unwonted adjective 
for a mathematical topic perhaps helps 
convey the electrifying excitement gen- 
erated by Margoulis's result among the 
mathematicians of the world. 

Unfortunately, Margoulis was not 
granted permission to travel to Helsinki 
to accept his Fields medal. In homage to 
his achievements, which were described 
by Jacques Tits of College de France at 
the award ceremony in Helsinki on 14 
August 1978, the entire audience in Fin- 
landia Hall rose to its feet, in a spontane- 
ous gesture of admiration for the medal- 
ist who was so conspicuously absent. 
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Antibodies (I): New Information About Gene Structure Antibodies (I): New Information About Gene Structure 

Until recently, techniques for the di- 
rect examination of genes were not avail- 
able. That situation has changed, how- 
ever, as a result of the revolution in mo- 
lecular biology that began early in this 
decade. It is now possible, for example, 
to pick out an individual gene from 
among the tens of thousands in the mam- 
malian genome, then to use recombinant 
DNA techniques to manufacture enough 
copies of the gene to study and finally to 
determine the sequence of the nucle- 
otides in that gene, and all in less than a 
year's time. 

One of the more rewarding appli- 
cations of the techniques has been to the 
study of antibody genes. Investigators 
are acquiring much new information 
about the numbers and arrangements of 
the genes in the mammalian genome. 
They have also determined the nucle- 
otide sequences of at least four of these 
genes. The research has provided both a 
direct confirmation of a long-held hy- 
pothesis about the organization of anti- 
body genes and some surprising new rev- 
elations about that organization. In addi- 
tion, the gene studies are providing im- 
portant clues to the solution of one of the 
long-standing problems of immunolo- 
gy-that is, how to account for the abili- 
ty of a single animal to make as many as 
a million different antibodies. 

What the DNA studies have confirmed 
about antibody gene arrangement is that 
there are separate genes coding for the 
variable and constant regions of anti- 
body chains. An individual antibody 
molecule consists of four polypeptide 
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chains-two identical light chains and 
two identical heavy chains (Fig. 1). Each 
of these polypeptide chains in turn con- 
sists of a variable region and a constant 
region. The variable regions of the light 
and heavy chains form the part of the 
antibody that combines with the appro- 
priate antigen. Thus the variable regions 
must differ from antibody to antibody. 
But the amino acid sequence of the con- 
stant region is the same for all chains of 
the same type. 

In 1965, William Dreyer of the Califor- 
nia Institute of Technology and J. C. 
Bennett of the University of Alabama 
School of Medicine suggested "the two 
gene-one polypeptide theory" for the 
synthesis of antibody proteins. They 
proposed that two genes, one for the var- 
iable and one for the constant region, 
were needed for the production of a 
single antibody chain. Since then the evi- 
dence has been consistent with this hy- 
pothesis, but direct demonstration of the 
separate genes was not achieved until 
1976, when Susumu Tonegawa and his 
colleagues at the Basel Institute for Im- 
munology showed that the DNA seg- 
ments coding for the constant and vari- 
able regions of mouse light chains are 
separate from one another in embryonic 
cells. 

The surest piece of evidence for the 
separation came when Tonegawa and his 
colleagues, in collaboration with Walter 
Gilbert and Allan Maxam at Harvard 
University, determined the complete nu- 
cleotide sequence of a fragment of em- 
bryonic DNA carrying the gene for the 
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variable region of a light chain. They 
found that beyond the codon (a sequence 
of three nucleotides specifying a particu- 
lar amino acid) for amino acid 98 of the 
variable region, there was no agreement 
between the nucleotide sequence of the 
DNA and the amino acid sequence of 
any light chain. Thus, they concluded 
that the DNA beyond codon 98 did not 
specify any light chain structure and that 
the gene for the constant region could 
not be attached to this codon. 

Although the genes for the variable 
and constant regions of an antibody pro- 
tein might be separated from one another 
in embryonic cells, which do not make 
antibodies, immunologists assumed that 
the two genes would somehow get to- 
gether in mature antibody-producing 
cells. And when the Basel workers 
looked at antibody gene patterns in a line 
of mature cells, they found that the genes 
coding for the variable and constant re- 
gions of the light chain produced by the 
cells appeared to be joined. 

But on closer examination of the struc- 
ture of the DNA encompassing both 
genes-genes Tonegawa and his col- 
leagues thought would be connected di- 
rectly to one another-the unexpected 
happened. They found that between the 
genes for the constant and variable re- 
gions of the light chains, the DNA con- 
tained a segment of about 1250 bases that 
was missing from the messenger RNA 
(mRNA) for the light chain in question. 
Thus, the DNA contained a nucleotide 
segment that could not be translated into 
protein structure since the sequence was 
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