
lateral-field animals. We can speculate 
that this would cause their eyes to ac- 
commodate more and that accommoda- 
tion might conceivably lead to changes in 
eye growth. Others have made similar 
speculations (16). Another possibility is 
that near objects cause increased con- 
vergence of the eyes. We have shown by 
recording eye movements that frontal- 
field birds make more divergent and con- 
vergent saccades than do normal birds, 
whereas lateral-field birds make fewer 
(17). One could imagine that increased 
convergence might affect ocular growth. 
Alternatively, retinal location may be an 
important variable. If the absence of ob- 
jects in the lateral visual field either 
causes extreme accommodation or oth- 
erwise has a particular effect on eye 
growth, it would account for the similar 
degree of myopia in the frontal-field ani- 
mals and in those monocularly deprived 
of form vision. 

In normal animals, each of the dimen- 
sions of the eye that affect refraction 
shows substantial interindividual varia- 
tion (7). If, at least in birds, myopia is 
caused by increased accommodation for 
close vision, this etiology could be a clue 
to a developmental feedback mechanism 
that normally assures that the eye grow 
toward correct refraction. Thus an ani- 
mal that starts out somewhat hyperopic 
would tend to accommodate more than a 
normal animal, which might cause a pat- 
tern of ocular growth that would tend to 
decrease the hyperopia. 

The effects of different visual experi- 
ences on neuronal connectivity in the 
brain are well established. Our results 
suggest that the morphology of the eye is 
influenced not only by the absence of vi- 
sual experience but also by the nature of 
the specific visual experiences. 
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goodness of sleep. 

Since the discovery of the mammalian 
sleep cycle, it has been known that major 
body movements occur predominantly 
before and after the periodically recur- 
rent episodes of desynchronization of 
the electroencephalogram (EEG) and 
rapid eye movements (REM) (1). Direct 
observation, photography, and video- 
tape analysis have shown that many of 
these phase-locked movements are pos- 
tural shifts (2). Implications of this find- 
ing are (i) that the longest periods of pos- 
tural immobility are associated with the 
non-REM (NREM) phase of the cycle 
and (ii) that inactivation of the motor ap- 
paratus is a phase-locked event. It fol- 
lows that postural immobility, easily de- 
tectable in time-lapse photographic data, 
could by itself provide a simple quan- 
titative read-out of the state of the brain 
oscillator controlling the REM-NREM 
sleep cycle. In addition, the total dura- 
tion of immobility so measured might be 
correlated with objective or subjective 
estimates of sleep duration and thus 
serve as a simple but valid measure of 
sleep quantity or quality. If so, time- 
lapse photography might be a means of 
conducting field studies of sleep behav- 
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ior that could be related to the findings of 
the sleep laboratory. Here we report the 
results of our first efforts to explore this 
possibility. 

Observation of 50 individuals sleeping 
at home and being photographed at 15- 
minute intervals revealed epochs of ap- 
parent postural immobility lasting from 
45 to 75 minutes and recurring with a pe- 
riodicity of 75 to 120 minutes (3). We 
wished to determine the relationship of 
these epochs to the EEG sleep cycle and 
to verify the apparent absence of move- 
ment in the photographs by continuously 
monitoring muscle activity on the poly- 
graph. The sleep of each of six subjects 
(three male and three female, between 
the ages of 20 and 30) was therefore re- 
corded in the sleep laboratory for four 
consecutive nights with an electroen- 
cephalograph (Grass model 6). A camera 
(Zeiss Contarex) was mounted on the 
ceiling over the bed and connected to an 
electronic timer. The camera was housed 
in a Lucite box lined with polystyrene 
foam for sound attenuation. Black-and- 
white pictures (35mm) of the subject 
were taken automatically every 15 min- 
utes throughout the night; a time ex- 
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measured photographically was positively related to subjective estimates of the 
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posure of 8 seconds and a 10-W night- 
light plugged into a wall socket gave sat- 
isfactory photographic results with Tri-X 
film. The camera timer was connected to 
the polygraph so that each shutter acti- 
vation pulse appeared on the recording, 
and a digital clock was placed next to the 
bed so that unequivocal matching of the 
polygraphic and photographic data could 
be made. No subject detected activation 
of the camera during a night's sleep. 

The EEG recordings were scored ac- 
cording to the Kales-Rechtschaffen cri- 
teria for sleep stages (4). We use the 
terms NREM to refer to (synchronized) 
EEG stages I through IV and REM to 
(desynchronized) EEG stage I with rapid 
eye movements. Each EEG sleep cycle 
consisted of progressive EEG synchro- 
nization (descending NREM sleep) fol- 
lowed by progressive EEG desynchroni- 
zation (ascending NREM sleep). A cycle 
was defined as the time between sleep 
onset and the end of the first REM period 
and, thereafter, between the ends of suc- 
cessive REM periods. We also recorded 
the electromyogram of the submental 
muscles and noted the magnitude and 
time of occurrence of movement arti- 
facts in this and in the EEG channels (2). 
Postural immobility was quantified by 
examining the photographic contact 
sheet for each subject and identifying 
any adjacent photographs without evi- 
dent movement of the trunk, head, or 
proximal limbs. Two consecutive photo- 

graphs without any sucl 
scored as one epoch ( 
consolidation (5). The el 
from each night of sleel 
graph paper in the usua 
stage display, and the er 
al immobility were sha 
1A). 

A total of 147 episod 
occurred during the stu 
of these (61.2 percent) 
epochs (>15 minutes). 
longed episodes of in 
frames or longer, occur 
of these began and en 
cycle. This striking evid 
limited nature of pos 
points to its coordinatic 
cycle. Of the episodes ( 
began in descending sta 
NREM sleep; of these, 
the same NREM sleep 
four episodes were ass 
ascending NREM stage 
the 50 NREM episodes 
scending stages II or ] 
stage IV; the nine other 
er-night cycles when o 
present. From this simp 
pears that postural imm 
fine and measure it is re 
sleep cycle and is assoc 
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cycle. 

In order to further 
relationship, sleep cycl 
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Fig. 1. Immobility and sleep cycle phase. rnotugLa p 

(A) Individual data. Prolonged periods of 
immobility (hatched bars) as determined B 
from time-lapse photographs are associ- o. 
ated with descending NREM stages of , 

the sleep cycle in this all-night study of a n 
single subject. The EEG data are ex- 
pressed as: A, awake; I, II, III, and IV, 100 
stages of NREM sleep; solid bars, REM _ / 
sleep. Photographs were taken every 15 M- - 
minutes at times indicated on the lower ? 
trace. (B) Grouped data. The time of be- 
ginning (left curve) and ending (right >, 50 
curve) of 44 epochs of postural immobil- - 

ity related to the average of all sleep cy- -g 
cles in which they occurred. Each curve o E 25 
is a cumulative histogram of percentage . 
of occurrences of immobility as a func- 0 
tion of percentage of cycle completed. 0 25 5 
Note the steep and smoothly ascending Percentage of < 
curve of onsets indicating that immobility 
begins in association with early NREM sleep; the curve of endings is b3 
sharply at stage IV onset which indicates that the process controlling postu1 
well before the end of NREM sleep (8). 
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h movement were by computing the percentage of time oc- 
-15 minutes) of cupied by the sleep stages for each cycle 
lectrographic data that included immobility. Since many of 
p were plotted on the late-night cycles consisted only of 
1 format for sleep stage II, only the first three cycles of 
pisodes of postur- each night were analyzed. Of the 41 
ided below (Fig. early-night NREM episodes, 25 (or .6) 

were associated with prolonged (>30 
les of immobility minutes) periods of immobility. If time 0 
dy. The majority marks the onset of stage II, the onsets of 
were two-frame immobility for each episode were deter- 

A total of 57 pro- mined and plotted as the percentage of 
nmobility, three cycle completed (Fig. lB). Most epi- 
-red. All but four sodes (29, or .7) began in descending 
ded in the same stage II. The end of epochs of immobility 
lence of the time- was similarly determined with time 0 
tural immobility designating the end of stage IV or of 
)n with the EEG stage III if there was no stage IV. Some 
of immobility, 54 episodes ended in descending NREM 

iges II and III of stages, but the subsequent steeply rising 
50 also ended in curve indicates that the majority of epi- 
sequence; only sodes (27, or .7) ended in stage IV and 

;ociated with the ascending NREM stages III, II, and I, 
s of the cycle. Of and an inflection point occurs at the on- 

41 began in de- set of stage IV. 
[II and ended in To obtain a single numerical estimate 
s occurred in lat- of the amount of immobility in a given 
nly stage II was nights sleep, a "consolidation index" 
)le analysis, it ap- was then computed for each night; this 

lobility as we de- measure was simply the ratio of the num- 
lated to the EEG ber of immobile epochs to the total num- 
iated mainly with ber of epochs asleep. Having observed 
4 phase of the the temporal association between immo- 

bility and descending stage of NREM 
detail this phase sleep, we expected to find a high positive 
es were averaged correlation between this value and the 

percentage of stages III and IV, but our 
data indicated no such correlation in the 
data from normal subjects (y = -.12). 

"~* ~ Since all but one of our normal subjects 
were good sleepers (less than 15-minute 
latency to sleep onset and more than 7.0 
hours duration), the weakness of correla- 

.I... -t-- ' tion may be due to the lack of variability 
25 30 in the data as well as to the unreliability 

of the 15-minute interval method in mea- 

suring immobility absolutely. 
With the goal of obtaining greater vari- 

ability in these sleep variables and to test 
[F- ~ the possibility that the photographic 

method might be sensitive to a clinically 
important difference in those variables, 
we conducted a pilot study of six self-de- 

Yr/ ~ scribed poor sleepers (>30-minute la- 

tency to sleep onset, <6.5 hours total 
sleep, >5 awakenings per night). When 
the pooled data from the poor sleepers 
were compared with the age and sex- 
matched normal subjects, the consoli- 
dation index was less (.34) in the poor 

O 75 io sleepers than in normal ones (.55). Sub- 
cycle completed ject mean values for the two groups did 

y contrast inflected not overlap (Fig. 2) and the difference 
re shifts is activated between the group means was significant 

(one-tailed t-test, P < .005). Thus, pho- 
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tographically measured immobility not 
only temporally labels cycle phase but 
can also give a sensitive and clinically 
useful measure of sleep. 

Postural immobility generally begins 
in descending stage II and ends in stage 
III or stage IV, just prior to the ascend- 
ing limb of the EEG sleep cycle. That is 
to say, time-lapse photographs taken at 
15-minute intervals can detect a motor 
correlate of the progressive EEG syn- 
chronization of NREM sleep. Immobil- 
ity may therefore reflect some funda- 
mental process of the brain during sleep, 
which simultaneously and similarly 
"deactivates" both the cerebral cortex 
and the motor apparatus. Major postural 
shifts begin quite early in stage IV, that 
is, well before cortical activation is evi- 
dent in the EEG. This apparent dis- 
sociation of motoric and EEG activity 
may be related to certain sleep "patholo- 
gies" such as somnambulism and enu- 
resis, which have been characterized as 
disorders of arousal because they repre- 
sent motor behavior in the absence of 
EEG activation and conscious aware- 
ness (6). It is also possible that this sur- 
prisingly early occurrence of movement 
is related to early activation of reticular 
brainstem neurons, which, in the cat, 
anticipates REM sleep by 5 minutes (7). 
(This phase lead of 15 percent is com- 
parable to the inflection point in the hu- 
man data of Fig. 1B.) 

Even though the duration of immobil- 
ity is underestimated by our 15-minute- 
interval technique, it can both approxi- 
mate the time of occurrence of NREM 
sleep and be correlated with subjective 
estimates of goodness of sleep. Although 
the photographic technique cannot pos- 
sibly duplicate the detailed and precise 
data of the sleep laboratory, we believe 
that a greater knowledge of the charac- 
teristics of immobility may enable us to 
obtain useful data about a night's sleep 
with a single roll of film. This technique 
is inexpensive and simple to apply. The 
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Fig. 2. The immobility indices of six "good" 
and six "poor" sleepers. The consolidation 
index is the percent of adjacent frames show- 
ing no major posture shifts. Good sleepers 
spend more time immobile than poor sleepers. 
There is no overlap in the subject means and 
the group means differ significantly. 

data are rapidly and reliably scored. 
Thus, widespread and extended field 
uses of the procedure are feasible. 

Since it is now possible to record 
quantifiable aspects of a subject's sleep 
in the comfort of the home rather than in 
the sleep laboratory, the behavioral 
scope of sleep research could be broad- 
ened to include person-to-person, behav- 
ior-to-behavior, and species-to-species 
interactions. Our anecdotal home studies 
have already revealed quantifiable inter- 
actions between the sleep of man and 
wife, between their presleep activity and 
subsequent sleep, and between their 
sleep and that of their pets (3). We also 
foresee use of the method in document- 
ing the most common of all sleep com- 

plaints, insomnia. In sum, we see the 
technique as opening the way to an eth- 
ology of human sleep behavior that could 
provide new insights into the behavioral, 
functional, and clinical significance of 
the sleep cycle. 

J. ALLAN HOBSON 
THEODORE SPAGNA 
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