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Gulf Stream Deflection by a Bottom Feature 

off Charleston, South Carolina 

Abstract. A topographic feature on the continental slope off Charleston at 32?N 
persistently deflects the Gulf Stream seaward, with the inshore surface thermal front 
deflected east or south of east in 27 of the 39 cases examined. Meanders often form 
downstream of the deflection, suggesting that the "Charleston bump" induces Gulf 
Stream fluctuations. 

Gulf Stream Deflection by a Bottom Feature 

off Charleston, South Carolina 

Abstract. A topographic feature on the continental slope off Charleston at 32?N 
persistently deflects the Gulf Stream seaward, with the inshore surface thermal front 
deflected east or south of east in 27 of the 39 cases examined. Meanders often form 
downstream of the deflection, suggesting that the "Charleston bump" induces Gulf 
Stream fluctuations. 

A frequent seaward deflection of the 
Gulf Stream occurs over a ridge and 
trough bottom irregularity in the conti- 
nental slope at about 32?N off Charles- 
ton, South Carolina. Satellite observa- 
tions of sea-surface thermal patterns 
show a considerable difference in the 
magnitude of the Gulf Stream fluctua- 
tions upstream and downstream of the 
"Charleston bump," with greater fluctu- 
ations occurring downstream. The win- 
ter example in Fig. 1 shows large undula- 
tions most evident in the shoreward ther- 
mal front between the warm Gulf Stream 
surface waters and the relatively cold 
shelf waters (1). The existence of Gulf 
Stream meanders in the South Atlantic 
Bight has been recognized for several 
decades (2), and several theories have 
been advanced, with varying degrees of 
success, to explain their generation, 
propagation, and decay (3). However, 
persistence of the deflection off Charles- 
ton (4), its association with a bottom 
irregularity (5), and its potential signifi- 
cance in modifying the downstream 
character of meanders (6) have only re- 
cently been appreciated. 

Surface isotherms are known to be 
reasonably well correlated with the 
deeper hydrographic and velocity struc- 
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ture of the Gulf Stream in the South At- 
lantic Bight (7), and the inshore surface 
thermal front in Fig. 1 may be associated 
with the shoreward edge of subsurface 
Gulf Stream flow. The Stream extends 
essentially to the bottom in this area (8) 
and thus must make dynamical adjust- 
ments as it flows over bottom topogra- 
phy. The simplest application of the vor- 
ticity conservation theorem predicts a 
seaward curvature of the Stream when it 
flows over a bump on an otherwise fea- 
tureless continental slope. 

The detailed bottom topography in- 
cluding the region enclosed in a box in 
Fig. 1 is shown in Fig. 2 (9). The crest of 
the ridge runs approximately trans- 
versely to the Stream as it enters the 
boxed area, and turns generally eastward 
farther offshore, trending toward the 
Blake Outer Ridge. A narrow trough or 
channel traceable to the base of the 
Blake Plateau at a depth of about 2 km 
runs eastward on the downstream side of 
the ridge. Ewing et al. (10) suggested 
that the ridge and trough system off 
Charleston may be a result of erosion 
along the southwestern flank of a geolog- 
ic structure known as the Cape Fear 
Arch, which extends seaward toward the 
Blake Outer Ridge. Uchupi (11) sug- 
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Fig. 1. Composite map of Gulf Stream surface thermal features in the South Atlantic Bight for 
15 February 1978 prepared by the Naval Oceanographic Office (1). The NOAA-5 satellite in- 
frared images from 12 to 14 February were used to locate shoreward and seaward surface 
fronts, shown by the solid lines. Ground-truth sea surface temperatures (degrees Celsius) are 
shown for comparison with the frontal structure. Symbols: 0100 is the latitude at which the 
inshore front turns seaward of the 100-fathom contour shown by the dashed line, and OE is the 
latitude at which the front reaches an eastwardly deflection. The detailed bottom topography in 
the region in the box is shown in Fig. 2. 
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Fig. 2. Bottom topography including the boxed region in Fig. 1, showing the ridge and trough 
irregularity off Charleston known as the "Charleston bump." The contours in meters were 
interpolated from the original chart (9), which was contoured with an interval of 25 fathoms 
(45.7 m). The mean position of the inshore surface thermal front suggested by 0100 and 0E is 
shaded. 

gested that the Gulf Stream may have 
been deflected southeastward by the 
ridge during a lower stand of sea level. 

To test the persistence of the topo- 
graphic deflection process, 39 surface 
thermal composites spanning the period 
6 April 1977 to 1 March 1978 were exam- 
ined. The composites were produced by 
the Naval Oceanographic Office at ap- 
proximately weekly intervals, except for 
the latter half of November and all of De- 
cember. Since the inshore surface ther- 
mal front is the most discernible Gulf 
Stream feature in the composites, it was 
used to estimate where the Stream began 
its seaward deflection by noting the lati- 
tude (0,00) at which the front crossed the 
100-fathom (183-m) contour (the only 
contour shown on the composites). In 37 
(95 percent) of the composites, 0l00 oc- 
curred inside the boxed region. In the re- 
maining two cases, the front was off- 
shore of the chosen isobath but still 
meandered seaward in the boxed region. 
In 27 (69 percent) of the composites, the 
deflection was sufficient to direct the 
Stream eastward or even south of east, 
and in those cases the latitude (0E) at 
which the front first reached its eastward 
direction was also recorded. The mean 
latitudes ? 1 standard deviation are 0,00 
= 31?49' ? 20' and OE = 31?59' + 23'. 
When compared with the topography in 
Fig. 2, these results suggest that the de- 
flection of the Stream is a remarkably 
persistent feature associated with the 
ridge and trough bottom structure off 
Charleston. The mean frontal path sug- 
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gested by 00o0 and 6E is shown by shading 
in Fig. 2. After being deflected over the 
ridge, the front often follows the trough 
offshore 50 to 100 km. 

Although the Stream deflection off 
Charleston seems to be a quasi-station- 
ary feature, the wave or eddy-like mean- 
ders in the lee of the ridge have been ob- 
served to drift slowly downstream at 30 
to 40 km/day (12). Cyclonic cold-core ed- 
dies with alongshore scales of 100 to 150 
km and apparent inshore currents setting 
southwestward are often observed to 
form along the inshore edge of the 
Stream. Three or four such eddies are 
suggested in Fig. 1. Southward setting 
eddy currents in this area were impedi- 
ments well known to early sailors north- 
ward bound; John White in 1590 gave the 
first written account of their presence 
and advised vessels to stand well off to 
sea where a "much swifter" current 
could be found to aid their passage (13). 

The similarity between the eddy scale 
in Fig. 1 and the alongshore separation of 
the four Carolina capes suggests an inter- 
action between the eddies and the coast- 
al boundary. A causative link between 
Gulf Stream eddies and the cuspate Car- 
olina forelands was first suggested in 
1895 by Abbe (14). He envisioned cy- 
clonic "back-set" eddies meshed with 
the bays. The eddies contributed to the 
structure of the capes by interfering with 
the southwestward coastal sediment 
drift. Figure 1 resembles an intuitive 
sketch in Abbe's paper, although the ed- 
dy pattern shown here is not stationary 

with respect to the bays and does not al- 
ways occur with such regularity. How- 
ever, calculations show that stationary 
or nearly stationary continental shelf 
waves with wavelengths of about 100 km 
and downstream energy flux are admis- 
sible free modes of the Carolina shelf 
wave guide, leading to the speculation 
that the "Charleston bump" may reso- 
nantly force lee shelf waves in the Gulf 
Stream (6). 
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