
lack of response to glutathione, y-amino- 
butyric acid, and N-acetylneuraminic 
acid. Glycine, threonine, valine, and leu- 
cine apparently repulsed the snails 
(Table 3). 

Snail conditioned water (7) and a wa- 
ter-soluble extract of lyophilized snail 
tissues (1 g per 10 ml of distilled water, 
incubated for 3 hours at 230C, and then 
centrifuged at 27,000g for 20 minutes) al- 
so attracted B. glabrata. These materials 
contain amino acids (7), but the presence 
of other molecules that may serve as 
pheromones must still be considered. It 
is of interest that we have observed an 
apparent increase in mating in B. gla- 
brata in the presence of proline, but 
quantitation of this response is not yet 
complete. 

Our experiments indicate that the 
amino acids glutamate and proline, snail 
conditioned water, and perhaps other 
unidentified molecules serve as chemical 
signals for and between individual B. 
glabrata. Jahan-Parwar (9) reported that 
glutamate is the main attractant in sea- 
weed for the sea slug Aplysia, and also 
suggested that proline may activate its 
reproductive processes. 

Although polyglutamate did not pro- 
vide an effective attractant in our rela- 
tively short (1 hour) experiments, it mer- 
its further study as a source of glutamate 
since it could perhaps be used to release 
glutamate slowly through natural hydrol- 
ysis in controlled-release molluscicides. 
Combinations of Mg2+ and Ca2+ with 
glutamate and proline should be ex- 
plored as sources of controlled-release 
attractants since we now know that such 
combinations affect three aspects of the 
schistosome life cycle. Miracidia respond 
to amino acids (7) and to Mg2+/Ca2+ 
ratio (10, 11), and cercariae respond to 
glutamate (6) as do the snail vectors used 
in our experiments. Starved snails also 
readily find chalk in our experimental de- 
sign, and Ca2+ and Mg2+ are often used in 
the production of controlled-release 
products (2). 

An ideal molluscicide would release 
no poison into the environment, and 
would contain a slow-release attractant 
or chemical stimulant that attracted the 
snail to its surface or induced the snail to 
ingest a particle. If the particles could be 
coated with cellulose, as suggested by 
Lewin (12), then they might be digested 
only by snails or other organisms pos- 
sessing cellulase. For areas with a high 
incidence of schistosomiasis, mollusci- 
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ing the chemical charade which mimics 
the host. 

Our experiments indicate that it might 
be possible to include relatively inexpen- 
sive attractants in controlled-release 
molluscicides which may also serve as 
schistosome larvicides. 
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The European corn borer and the red- 
banded leaf roller use (Z)-l 1-tetradecenyl 
acetate in two quite distinct pheromone 
systems, sex attraction and precopula- 
tory behavior (1). Male sex attraction is 
dependent on specific ratios of the (Z)- 
and (E)- 1-tetradecenyl acetates (2). 

Definition of the conformation of (Z)- 
11-tetradecenyl acetate in the phero- 
mone chemoreceptor has been of consid- 
erable interest to us. In view of the in- 
finite number of conformations possible 
for (Z)- 1 -tetradecenyl acetate, the prob- 
lem initially seems impossible. We now 
present our approach to the solution of 
the problem of defining the conformation 
of the pheromone as it interacts with the 
chemoreceptors of male European corn 
borer and red-banded leaf roller moths. 
Our results show that the chemoreceptor 
systems of the two moths are different, 
that the precopulatory behavior system 
has two stereospecific chemoreceptors, 
and that both chemoreceptors for the 
achiral pheromone are chiral. The con- 
formation of carbon atoms 10 to 14 of 
(Z)- 1-tetradecenyl acetate in each chem- 
oreceptor is defined. 

The European corn borer and the red- 
banded leaf roller are capable of detect- 
ing the methyl group at position 14 in (Z)- 
11-tetradecenyl acetate (3). Starting from 

The European corn borer and the red- 
banded leaf roller use (Z)-l 1-tetradecenyl 
acetate in two quite distinct pheromone 
systems, sex attraction and precopula- 
tory behavior (1). Male sex attraction is 
dependent on specific ratios of the (Z)- 
and (E)- 1-tetradecenyl acetates (2). 

Definition of the conformation of (Z)- 
11-tetradecenyl acetate in the phero- 
mone chemoreceptor has been of consid- 
erable interest to us. In view of the in- 
finite number of conformations possible 
for (Z)- 1 -tetradecenyl acetate, the prob- 
lem initially seems impossible. We now 
present our approach to the solution of 
the problem of defining the conformation 
of the pheromone as it interacts with the 
chemoreceptors of male European corn 
borer and red-banded leaf roller moths. 
Our results show that the chemoreceptor 
systems of the two moths are different, 
that the precopulatory behavior system 
has two stereospecific chemoreceptors, 
and that both chemoreceptors for the 
achiral pheromone are chiral. The con- 
formation of carbon atoms 10 to 14 of 
(Z)- 1-tetradecenyl acetate in each chem- 
oreceptor is defined. 

The European corn borer and the red- 
banded leaf roller are capable of detect- 
ing the methyl group at position 14 in (Z)- 
11-tetradecenyl acetate (3). Starting from 

0036-8075/78/0908-0926$00.50/0 Copyright ? 1978 AAAS 0036-8075/78/0908-0926$00.50/0 Copyright ? 1978 AAAS 

4. E. H. Michelson, ibid. 9, 480 (1960). 
5. C. R. Townsend, Anim. Behav. 21, 544 (1973). 
6. A. J. Maclnnis, Nature (London) 224, 1221 

(1969). 
7. ___ , W. M. Bethel, E. M. Cornford, ibid. 

248, 361 (1974). 
8. G. W. Snedecor, Statistical Methods (Iowa 

State College Press, Ames, 1956). 
9. B. Jahan-Parwar, in Olfaction and Taste, D. A. 

Denton and J. P. Coghlan, Eds. (Academic 
Press, New York, 1975), vol. 5, pp. 133-139. 

10. H. H. Stibbs, E. Chernin, S. Ward, M. L. Kar- 
novsky, Nature (London) 260, 702 (1976). 

11. G. M. Sponholtz and R. B. Short, J. Parasitol. 
62, 155 (1976). 

12. R. A. Lewin, U.S. Patent Application No. 
30141/61, 1961. 

13. J. Folch, M. Lee, G. H. Sloane-Stanley, J. Biol. 
Chem. 226, 497 (1957). 

14. I. Smith, Chromatographic and Electrophoretic 
Techniques (Wiley, New York, 1969), vol. 1. 

15. E. Nakano and S. Yamamoto, Dev. Biol. 28, 528 
(1972). 

16. We thank R. Rodriguez, D. Kebo, and R. Kim 
for technical assistance. This work was support- 
ed by the Edna McConnell Clark Foundation 
grant 276-0016 and NIH grant Al 13228 to 
A.J.M. 

30 March 1978; revised 14 June 1978 

4. E. H. Michelson, ibid. 9, 480 (1960). 
5. C. R. Townsend, Anim. Behav. 21, 544 (1973). 
6. A. J. Maclnnis, Nature (London) 224, 1221 

(1969). 
7. ___ , W. M. Bethel, E. M. Cornford, ibid. 

248, 361 (1974). 
8. G. W. Snedecor, Statistical Methods (Iowa 

State College Press, Ames, 1956). 
9. B. Jahan-Parwar, in Olfaction and Taste, D. A. 

Denton and J. P. Coghlan, Eds. (Academic 
Press, New York, 1975), vol. 5, pp. 133-139. 

10. H. H. Stibbs, E. Chernin, S. Ward, M. L. Kar- 
novsky, Nature (London) 260, 702 (1976). 

11. G. M. Sponholtz and R. B. Short, J. Parasitol. 
62, 155 (1976). 

12. R. A. Lewin, U.S. Patent Application No. 
30141/61, 1961. 

13. J. Folch, M. Lee, G. H. Sloane-Stanley, J. Biol. 
Chem. 226, 497 (1957). 

14. I. Smith, Chromatographic and Electrophoretic 
Techniques (Wiley, New York, 1969), vol. 1. 

15. E. Nakano and S. Yamamoto, Dev. Biol. 28, 528 
(1972). 

16. We thank R. Rodriguez, D. Kebo, and R. Kim 
for technical assistance. This work was support- 
ed by the Edna McConnell Clark Foundation 
grant 276-0016 and NIH grant Al 13228 to 
A.J.M. 

30 March 1978; revised 14 June 1978 

this observation, it is possible to design 
experiments that explore the con- 
formation of the olefinic region of the 
molecule (carbon atoms 10 to 14). One 
possible conformation is particularly 
easily tested, that is, that in which the C- 
14 methyl group is approximately in 
the plane defined by carbon atoms 10 
to 13. This conformation can be mim- 
icked by the cyclic system (Fig. 1A) 
formed by removal of hydrogen atoms 
from carbon atoms 10 and 14. This 
change also introduces an asymmetric 
center at position 10. 

Racemic 9-(2-cyclopenten- 1-yl)nonyl 
acetate was synthesized by coupling 2- 
(2-cyclopenten-l-yl)ethyl tosylate and 
the Grignard reagent from 7-bromo-l- 
heptyl 2-tetrahydropyranyl ether, re- 
moval of the tetrahydropyranyl pro- 
tecting group, and acetylation. The same 
sequence starting with optically pure 
(+)-(S)-2-(2-cyclopenten- 1-yl)ethyl tosy- 
late (4) gave (+)-(R)-9-(2-cyclopen- 
ten-l-yl)nonyl acetate chemical puri- 
ty > 99.5 percent, [a]2 = +70.8? ? 
0.7? (C - 3.18, CHCl3), > 99.9 percent 
optical purity (5-8). The enantiomer was 
synthesized by a different procedure. 
Coupling of optically pure (-)-(S)-2-cy- 
clopenten-1-ylmethyl tosylate (9) and the 
Grignard reagent from 8-bromo-l-octyl 
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Chemoreceptors in Lepidoptera: Stereochemical 

Differentiation of Dual Receptors for an Achiral Pheromone 

Abstract. The racemate and optically pure enantiomers of 9-(2-cyclopenten-l- 
yl)nonyl acetate have been synthesized and shown to mimic certain biological prop- 
erties of (Z)-l l-tetradecenyl acetate. European corn borers and red-banded leaf roll- 
ers respond differently to the racemate and to the enantiomers in precopulatory be- 
havior bioassay. The responses demonstrate the presence of two stereospecific 
chemoreceptors, show the chiral character of these receptors, and define the con- 
formation of carbon atoms 10 to 14 of (Z)-lI -tetradecenyl acetate in these receptors. 
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2-tetrahydropyranyl ether, removal of 
the tetrahydropyranyl protecting group, 
and acetylation gave (-)-(S)-9-(2-cy- 
clopenten- -yl)nonyl acetate chemical 
purity > 99.5 percent, [a]25 = -70.7? + 
0.4? (C = 3.18, CHCl3), > 99.9 percent 
optical purity (6, 7). The second proce- 
dure starting with (+)-(R)-2-cyclo- 
penten-1-ylmethyl tosylate gave (+)- 
(R)-9-(2-cyclopenten-1-yl)nonyl acetate 
([a]25 = 70.0? + 0.6?), which had biolog- 
ical properties identical to those of the 
same enantiomer prepared by the first 
route. This fact eliminates trace con- 
tamination in the reactants as a problem 
in the bioassay. 

Results of bioassays (10, 11) with the 
enantiomers of 9-(2-cyclopenten-l-yl)- 
nonyl acetate, the racemate, and (Z)-ll- 
tetradecenyl acetate are presented in 
Table 1. Data for the European corn bor- 
er show that the (-)-(S)-9-(2-cyclo- 
penten-l-yl)nonyl acetate is as effective 
in elicitation of precopulatory behavior 
as the natural sex pheromone [(Z)-1 1-tet- 
radecenyl acetate]. The (+)-(R) enanti- 
omer is much less effective, and the race- 
mate is intermediate in activity between 
the enantiomers. The red-banded leaf 
roller responses are quite remarkably 
different. The enantiomers show equal 
activity, and the racemate is significantly 
more active than either enantiomer. 
These data are reminiscent of the data 
obtained with enantiomers of the chiral 
aggregation pheromone of Gnathotricus 
sulcatus (12) in which an enantiomeric 
blend was required to attract the beetle. 
The greater activity of the racemate in 
the red-banded leaf roller requires the 
existence of two stereospecific chem- 
oreceptors, one primarily (or exclusive- 
ly) sensitive to the (+)-(R)-9-(2-cy- 
clopenten-l-yl)nonyl acetate and one 
sensitive to the (-)-(S) enantiomer. The 
greater activity of the racemate is a con- 
sequence of reinforcing signals from two 
chemoreceptors. The European corn 
borer data are consistent with the pres- 
ence of a single stereoselective chem- 
oreceptor. 

The possible differences in the con- 
formation of (Z)-ll-tetradecenyl acetate 
in the two receptors can be defined by 
two models. Either the double bonds are 
in the same position in both chem- 
oreceptors and the C-10 stereochemistry 
is inverted (model 1, Fig. lB) or the 
stereochemistry at C-10 is maintained, 
and the difference lies in the double bond 
position (model 2, Fig. 1C). Model 1 is 
not tenable for the natural pheromone. 
The achiral pheromone has two hydro- 
gen atoms attached to C-10, and the con- 
figurational identity is lost. Model 2, 
however, makes perfect sense for the 
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natural pheromone. In model 2 (Fig. 1C), 
the two possible arrangements corre- 
spond to two sensible conformations of 
the natural pheromone, which differ in 
the coiling of the carbon chain. In a chir- 
al receptor, these conformations become 
chiral; that is, the interactions with the 
receptor are diastereomeric. The pro- 
chiral character of (Z)- 1-tetradecenyl 
acetate is thus used to good advantage in 

the insect chemoreceptor system. The 
red-banded leaf roller has evolved at 
least two chemoreceptors (one in com- 
mon with the European corn borer) that 
accommodate different conformations of 
the achiral (but prochiral) pheromone. 
This striking result suggests that the in- 
sect chemoreceptor systems that are 
known to sense ratios of different geo- 
metric isomers (2) may, in general, use 

Table 1. Sex stimulation assay results with European corn borer and red-banded leaf roller 
males (10, 11). Numbers followed by the same letter are not statistically different from each 
other, on the basis of contingency table analyses. 

Mean percent male response 
Stimulus (500 ng) European Red-banded 

corn borer leaf roller 

(Z)-11-Tetradecenyl acetate 64a 90d 
(-)-9-(2-Cyclopenten-l-yl)nonyl acetate 44b 93d 
(+)-(R)-9-(2-Cyclopenten-l-yl)nonyl acetate 16c 67e 
(-)-(S)-9-(2-Cyclopenten-l-yl)nonyl acetate 65a 67e 

(A) (Z)- 1-tetradecenyl acetate 

H 
11 

CH3CO2(CH2)9' 10/ CZ -H 
CH2 C 

CH3 ---CH2 

14 13 

9-(2-cyclopenten-l-yl)nonyl acetate 

CH3C02(CH) CH3002(CH2) 9 

(B) Model 1 

CH3C2(CH2)9 CH3C02(CH2)9 
H 

CH3C02(CH2)9 CH3C02(CH2)9 
1 . 

H H / 

(C) Model 2 

CH3C02(CH2)9 H 

%[ 
CH3C02(CH2)9 H 

~ > 

Natural pheromone 

CH3CO2(CH2)9 CH3CO2(CH2)9 

Fig. 1. (A) The natural precopulatory behavior pheromone (Z)-1 l-tetradecenyl acetate, and the 
cyclic mimic 9-(2-cyclopenten-1-yl)nonyl acetate. (B) Model 1 shows the enantiomers as they 
would appear in different receptors which maintain the double bond position constant and differ 
in the configuration at C-10. This model is meaningless for the natural pheromone, which has 
two hydrogens at C-10. (C) Model 2 shows the enantiomers in receptors that maintain the con- 
figuration at C-10 and place the double bond in different positions. This model makes sense for 
the natural pheromone, which simply coils differently in the two chiral receptors. 
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ratio discrimination based on two or 
more receptor systems even when de- 
tecting a single chemical compound. The 
adaptive advantage for the insect is 
clearly specificity in detection. The 
greater the number of specific con- 
formations of a single molecule required 
to satisfy the different chemoreceptors, 
the lower the probability that an incor- 
rect molecule will satisfy the chem- 
oreceptor requirements. We consider it 

probable that other highly selective 
chemical communication systems, such 
as hormones, also use multiple chem- 
oreceptor systems to achieve a high de- 
gree of chemical specificity. 
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Regulative Interactions Between Cells from Different 

Imaginal Disks of Drosophila melanogaster 

Abstract. The regulative behavior of cells from the imaginal wing disk of Drosophi- 
la melanogaster can be modified by interaction with cells from different disk types. 
Both thoracic and nonthoracic disks are able to interact, but there are major dif- 
ferences in the effectiveness of interaction. Thefinding lends experimental support to 

the idea that cells in different fields within the same organism use the same mecha- 

nism for specifying positional information. A similar conclusion has been reached by 

Wilcox and Smith based on studies of the mutation wingless. 
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are thought to be generated by cell inter- 
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cells according to their locations relative 

to other cells in the same cell population 
(1). Although Wolpert (1) proposed some 
time ago that the mechanism for speci- 

fying positional information may be the 
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male 
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61 15 81 68 58 43 41 37 64 
61 15 80 68 58 42 41 31 64 

7 10 44 30 14 21 11 9 34 
3 11 42 12 2 21 11 14 29 

61 15 81 68 58 43 41 37 64 
61 15 80 68 58 42 41 31 64 

7 10 44 30 14 21 11 9 34 
3 11 42 12 2 21 11 14 29 
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2 14 1 3 

1 6 69 25 8 
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tN = total number of mixtures examined. 
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