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Time, Structure, and Fluctuations 
Ilya Prigogine 

The problem of time (t) in physics and 
chemistry is closely related to the formu- 
lation of the second law of thermody- 
namics. Therefore, another possible title 
of this lecture could have been "The 
Macroscopic and Microscopic Aspects 
of the Second Law of Thermodynam- 
ics. " 

It is the main thesis of this lecture that 
we are only at the beginning of a new de- 
velopment of theoretical chemistry and 
physics in which thermodynamic con- 
cepts will play an even more basic role. 
Because of the complexity of the sub- 
ject, I shall limit myself here mainly to 
conceptual problems. The conceptual 

Summary. Fundamental conceptual problems that arise from the macroscopic and 
microscopic aspects of the second law of thermodynamics are considered. It is shown 
that nonequilibrium may become a source of order and that irreversible processes 
may lead to a new type of dynamic states of matter called "dissipative structures." 
The thermodynamic theory of such structures is outlined. A microscopic definition of 
irreversible processes is given, and a transformation theory is developed that allows 
one to introduce nonunitary equations of motion that explicitly display irreversibility 
and approach to thermodynamic equilibrium. The work of the group at the University 
of Brussels in these fields is briefly reviewed. In this new development of theoretical 
chemistry and physics, it is likely that thermodynamic concepts will play an ever- 
increasing role. 

The second law of thermodynamics 
has played a fundamental role in the his- 
tory of science far beyond its original 
scope. Suffice it to mention Boltzmann's 
work on kinetic theory, Planck's discov- 
ery of quantum theory, and Einstein's 
theory of spontaneous emission, all of 
which were based on the second law of 
thermodynamics. 
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structure we have to show that nonequi- 
librium may be a source of order. Irre- 
versible processes may lead to a new 
type of dynamic states of matter which I 
have called "dissipative structures." I 
discuss the thermodynamic theory of 
such structures in the sections on en- 
tropy production, thermodynamic stabil- 
ity theory, and application to chemical 
reactions. 

These structures are of special interest 
today in chemistry and biology. They 
manifest a coherent, supermolecular 
character which leads to new, quite 
spectacular manifestations, for example, 
in biochemical cycles involving oscilla- 
tory enzymes. 

How do such coherent structures ap- 
pear as the result of reactive collisions? 
This question is briefly discussed in the 
section on the law of large numbers. I 
would emphasize that conventional 
chemical kinetics corresponds to a 
"mean field" theory very similar to the 
van der Waals theory of the equation of 
state or Weiss's theory of ferromagnet- 
ism. Exactly as in these cases, the mean 
field theory breaks down near the insta- 
bility where the new dissipative struc- 
tures originate. Here (as in equilibrium 
theory) fluctuations play an essential 
role. 

In the last two sections I shall turn to 
the microscopic aspects and review the 
recent work done by our group at the 
University of Brussels in this direction. 
This work leads to a microscopic defini- 
tion of irreversible processes. How- 
ever, this development is only possible 
through a transformation theory which 
allows one to introduce new nonunitary 
equations of motion that explicitly dis- 
play irreversibility and approach to ther- 
modynamic equilibrium. 

The inclusion of thermodynamic ele- 
ments leads to a reformulation of (classi- 
cal or quantum) dynamics. This is a most 
surprising feature. Since the beginning of 
this century we were prepared to find 
new theoretical structures in the micro- 
world of elementary particles or in the 
macroworld of cosmological dimensions. 
We see now that even for phenomena on 
our own level the incorporation of ther- 
modynamic elements leads to new theo- 
retical structures. This is the price we 

problems have both macroscopic and mi- 
croscopic aspects. For example, from 
the macroscopic point of view classical 
thermodynamics has largely clarified the 
concept of equilibrium structures such as 
crystals. 

Thermodynamic equilibrium may be 
characterized by the minimum of the 
Helmholtz free energy, usually defined 
by 

F= E- TS (1) 

where E is the internal energy, T is the 
absolute temperature, and S is the en- 
tropy. Are most types of "organiza- 
tions" around us of this nature? One 
need only ask such a question to see that 
the answer is no. Obviously in a town or 
in a living system we have a quite dif- 
ferent type of functional order. To obtain 
a thermodynamic theory for this type of 
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must pay for a formulation of theoretical 
methods in which time appears with its 
full meaning associated with irreversi- 
bility or even with "history" and not 
merely as a geometric parameter associ- 
ated with motion. 

Entropy Production 

At the very core of the second law of 
thermodynamics we find the basic dis- 
tinction between "reversible" and "irre- 
versible" processes (1). This leads ulti- 
mately to the introduction of S and the 
formulation of the second law of ther- 
modynamics. The classical formulation 
due to Clausius refers to isolated sys- 
tems exchanging neither energy nor mat- 
ter with the outside world. The second 
law then merely ascertains the existence 
of a function, S, which increases mono- 
tonically until it reaches its maximum at 
the state of thermodynamic equilibrium, 

dS 
dt _0 (2) dt- 

It is easy to extend this formulation to 
systems which exchange energy and 
matter with the outside world (Fig. 1). 
We have then to distinguish in the en- 
tropy change dS two terms: the first, deS, 
is the transfer of entropy across the 
boundaries of the system; the second, 
diS, is the entropy produced within the 
system. The second law assumes that the 
S production inside the system is posi- 
tive (or zero) 

diS > 0 (3) 

The basic distinction here is between 
reversible processes and irreversible 
processes. Only irreversible processes 
contribute to entropy production. Obvi- 
ously, the second law expresses the fact 
that irreversible processes lead to the 
one-sidedness of time. The positive time 
direction is associated with the increase 
of S. Let me emphasize the strong and 
very specific way in which the one-sided- 
ness of time appears in the second law. 
The formulation of this law implies the 
existence of a function having quite spe- 
cific properties, as expressed by the fact 
that for an isolated system the function 
can only increase in time. Such functions 
play an important role in the modern the- 
ory of stability as initiated by the classic 
work of Lyapounov. For this reason 
they are called Lyapounov functions (or 
functionals). 

Entropy is a Lyapounov function for 
isolated systems. Thermodynamic po- 
tentials such as the Helmholtz or Gibbs 
free energy are also Lyapounov func- 
tions for other "boundary conditions" 
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Fig. 1. The exchange of entropy between the 
outside and the inside. 

(Eq. 4) for the S production. This for- 
mula can only be established in some 
neighborhood of equilibrium [see (3)]. 
This neighborhood defines the region of 
local equilibrium, which I shall discuss 
from the point of view of statistical me- 
chanics in the section on nonunitary 
transformation theory. 

At thermodynamic equilibrium we 
have simultaneously for all irreversible 
processes 

p = 0 (5a) 

and 

(such as imposed values of temperature 
and volume). 

In all these cases the system evolves 
to an equilibrium state characterized by 
the existence of a thermodynamic poten- 
tial. This equilibrium state is an "attrac- 
tor" for nonequilibrium states. This is an 
essential aspect that was rightly empha- 
sized by Planck (1). 

However, thermodynamic potentials 
exist only for exceptional situations. The 
inequality in Eq. 3, which does not in- 
volve the total differential of a function, 
does not in general permit one to define a 
Lyapounov function. Before we come 
back to this question, I should empha- 
size that 150 years after its formulation 
the second law of thermodynamics still 
appears to be more a program than a 
well-defined theory in the usual sense, as 
nothing precise (except the sign) is said 
about the S production. Even the range 
of validity of this inequality is left un- 
specified. This is one of the main reasons 
why the applications of thermodynamics 
were essentially limited to equilibrium 
processes. 

To extend thermodynamics to non- 
equilibrium processes, we need an ex- 
plicit expression for the S production. 
Progress has been achieved along this 
line by supposing that even outside equi- 
librium S depends only on the same vari- 
ables as at equilibrium. This is the as- 
sumption of "local" equilibrium (2). 
Once this assumption is accepted, we 
obtain for P, the entropy production per 
unit time, 

dS 
P-= S = J Xp = 0 (4) 

where the Jp are the rates of the various 
irreversible processes p involved (chem- 
ical reactions, heat flow, diffusion) and 
the Xp are the corresponding generalized 
forces (affinities, gradients of temper- 
ature, gradients of chemical potential). 
Equation 4 is the basic formula of macro- 
scopic thermodynamics of irreversible 
processes. 

I have used supplementary assump- 
tions to derive the explicit expression 

p = 0 (5b) 

It is therefore quite natural to assume, at 
least near equilibrium, linear homoge- 
neous relations between the flows and 
the forces. Such a scheme automatically 
includes empirical laws such as Fourier's 
law, which expresses that the flow of 
heat is proportional to the gradient of 
temperature, or Fick's law for diffusion, 
which states that the flow of diffusion is 
proportional to the gradient of concen- 
tration. We obtain in this way the linear 
thermodynamics of irreversible process- 
es characterized by the relations (4) 

(6) 

Linear thermodynamics of irreversible 
processes is dominated by two important 
results. The first is expressed by the On- 
sager reciprocity relations (5), which 
state that 

Lpp, = Lp,p (7) 

When the flow Jp corresponding to the 
irreversible process p is influenced by 
the force Xp, of the irreversible process 
p', then the flow Jp, is also influenced by 
the force X, through the same coeffi- 
cient. 

The importance of the Onsager rela- 
tions resides in their generality. They 
have been subjected to many experimen- 
tal tests. Their validity has shown that 

nonequilibrium thermodynamics leads, 
as does equilibrium thermodynamics, to 
general results independent of any spe- 
cific molecular model. The discovery of 
the reciprocity relations corresponds 
really to a turning point in the history of 
thermodynamics. 

A second interesting theorem valid 
near equilibrium is the theory of mini- 
mum S production (6), which states that 
for steady states .sufficiently close to 
equilibrium S production reaches its 
minimum. Time-dependent states (corre- 
sponding to the same boundary condi- 
tions) have a higher S production. The 
theorem of minimum S production re- 
quires even more restrictive conditions 
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than the linear relations (Eq. 6). It is val- 
id in the frame of a strictly linear theory 
in which the deviations from equilibrium 
are so small that the phenomenological 
coefficients Lpp, may be treated as con- 
stants. 

The theorem of minimum S production 
expresses a kind of "inertial" property 
of nonequilibrium systems. When given 
boundary conditions prevent the system 
from reaching thermodynamic equilibri- 
um (that is, zero S production), the sys- 
tem settles down to the state of "least 
dissipation." 

It has been clear since the formulation 
of this theorem that this property is 
strictly valid only in the neighborhood of 
equilibrium. For many years great ef- 
forts were made to generalize this theo- 
rem to situations further away from equi- 
librium. It came as a great surprise when 
it was finally shown that far from equilib- 
rium the thermodynamic behavior could 
be quite different, in fact, even opposite 
to that indicated by the theorem of mini- 
mum S production. 

It is remarkable that this new type of 
behavior appears in typical situations 
that have been studied in classical hydro- 
dynamics. An example that was first ana- 
lyzed from this point of view is the so- 
called "Benard instability." Consider a 
horizontal layer of fluid between two in- 
finite parallel planes in a constant gravi- 
tational field. Let us maintain the lower 
boundary at temperature T, and the high- 
er boundary at temperature T2 with 
T1 > T2. For a sufficiently large value of 
the "adverse" gradient (Tl1- T2)/ 
(T1 + T2), the state of rest becomes un- 
stable and convection starts. The en- 
tropy production is then increased as the 
convection provides a new mechanism 
of heat transport. Moreover, the state of 
flow, which appears beyond the instabili- 
ty, is a state of organization as compared 
to the state of rest. Indeed, a macroscop- 
ic number of molecules has to move in a 
coherent fashion over macroscopic times 
to realize the flow pattern. 

We have here a good example of the 
fact that nonequilibrium may be a source 
of order. We shall see in the sections on 
thermodynamic stability theory and ap- 
plication to chemical reactions that this 
situation is not limited to hydrodynamic 
situations but also occurs in chemical 
systems when well-defined conditions 
are imposed on the kinetic laws. 

It is interesting that Boltzmann's order 
principle as expressed by the canonical 
distribution would assign almost zero 
probability to the occurrence of Benard 
convection. Whenever new coherent 
states occur far from equilibrium, the 
very concept of probability, as implied in 
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Fig. 2. Time evolution of second-order excess 
entropy (82S)eq around equilibrium. 

the counting of the number of com- 
plexions, breaks down. In the case of 
B&nard convection, we may imagine that 
there are always small convection cur- 
rents appearing as fluctuations from the 
average state; but, below a certain criti- 
cal value of the temperature gradient, 
these fluctuations are damped and dis- 
appear. However, above some critical 
value, certain fluctuations are amplified 
and give rise to a macroscopic current. 
A new supermolecular order appears 
which corresponds basically to a giant 
fluctuation stabilized by exchanges of 
energy with the outside world. This is 
the order characterized by the occur- 
rence of dissipative structures. 

Before discussing further the possi- 
bility of dissipative structures, I would 
like to review some aspects of thermody- 
namic stability theory in relation to the 
theory of Lyapounov functions. 

Thermodynamic Stability Theory 

The states corresponding to thermody- 
namic equilibrium, or the steady states 
corresponding to a minimum of S pro- 
duction in linear nonequilibrium ther- 
modynamics, are automatically stable. I 
have already introduced the concept of a 
Lyapounov function. According to the 
theorem of minimum S production, the S 
production is precisely such a Lyapou- 
nov function in the strictly linear region 
around equilibrium. If the system is per- 
turbed, the S production will increase 
but the system reacts by coming back to 
the minimum value of the S production. 

Similarly, closed equilibrium states 
are stable when corresponding to the 
maximum of S. If we perturb the system 
around its equilibrium value, we obtain 

S = S0 + 8S + - ^2S (8) 2 

where S0 is the equilibrium entropy. 
However, because the equilibrium state 
was a maximum, the first-order term 
vanishes and therefore the stability is 
given by the sign of the second-order 
term 82S. 

As Glansdorff and Prigogine have 
shown, 82S is a Lyapounov function in 
the neighborhood of equilibrium inde- 
pendently of the boundary conditions 
(3). With classical thermodynamics it is 
possible to calculate explicitly this im- 
portant expression. One obtains (3) 

T82S = -CV (87)2 + 

P 
(aV),N2 + X jyy,8Ny8Ny,] < 0 (9) 

Here Cv is the specific heat at constant 
volume, p is the density, v = 1/p is the 
specific volume (the index Ny means that 
the composition is maintained constant 
in the variation of v), X is the isothermal 
compressibility, Ny is the mole fraction 
of component y, and /,, is the deriva- 
tive 

?yy 
- 

a Ny, p 7 

where p is pressure. 
The basic stability conditions of classi- 

cal thermodynamics first formulated by 
Gibbs are as follows: 

CV, > 0 (thermal stability) 

X > 0 (mechanical stability) 

E iy,N8NN, > 0 (stability with 

respect to diffusion) 

These conditions imply that 62S is a neg- 
ative quadratic function. Moreover, it 
can be shown by elementary calculations 
that the time derivative of 82S is related 
to P through (3) (see Eq. 4) 

I 
- S = Jpp = P > 0 2 at (11) 

It is precisely because of the inequal- 
ities in Eqs. 9 and 11 that 62S is a 
Lyapounov function. The existence of 
the Lyapounov function ensures the 
damping of all fluctuations. That is the 
reason why near equilibrium a macro- 
scopic description for large systems is 
sufficient. Fluctuations can only play a 
subordinate role, appearing as correc- 
tions to the macroscopic laws which can 
be neglected for large systems (Fig. 2). 

We are now prepared to investigate 
the fundamental questions: Can we ex- 
trapolate this stability property further 
away from equilibrium? Does 62S play 
the role of a Lyapounov function when 
we consider larger deviations from equi- 
librium but still in the frame of macro- 
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scopic description? We again calculate 
the perturbation 82S but now around a 
nonequilibrium state. The inequality in 
Eq. 9 still remains valid in the range of 
macroscopic description. However, the 
time derivative of 82S is no longer related 
to the total S production as in Eq. 11 but 
is related to the perturbation of this S 
production. In other words, we now 
have (3) 

'- s = E ap5Xp 2 ot p 
(12) 

The right side of Eq. 12 is what 
Glansdorff and Prigogine have called the 
"excess entropy production." I should 
emphasize that 8Jp and 8Xp are the de- 
viations from the values J, and Xp at the 
stationary state, the stability of which we 
are testing through a perturbation. Now, 
contrary to what happens for equilibrium 
or near-equilibrium situations, the right 
side of Eq. 12 corresponding to the ex- 
cess S production generally has no well- 
defined sign. If for all t larger than t0, 
where to is the starting time of the per- 
turbation, we have 

E aJpXp - 0 (13) 
p 

then 82S is indeed a Lyapounov function 
and stability is ensured (see Fig. 3). In 
the linear range, the excess S production 
has the same sign as the S production it- 
self and we recover the same result as 
with the theorem of minimum S produc- 
tion. However, the situation changes in 
the range far from equilibrium. There the 
form of chemical kinetics plays an essen- 
tial role. 

In the next section I shall consider a 
few examples. For appropriate types of 
chemical kinetics the system may be- 
come unstable. This result shows that 
there is an essential difference between 
the laws of equilibrium and the laws far 
away from equilibrium. The laws of equi- 
librium are universal. However, far from 
equilibrium the behavior may become 
very specific. This is, of course, a wel- 
come circumstance, because it permits 
us to introduce a distinction in the be- 
havior of physical systems that would be 
incomprehensible in an equilibrium 
world. 

All these considerations are very gen- 
eral. They may be extended to systems 
in which macroscopic motion may be 
generated to problems of surface tension 
or the effect of an external field (7). For 
example, in the case in which we include 
macroscopic motion, we have to consid- 
er the expression [see (3)] 

82Z= 82S - f P- 
L dV < O (14) 

780 

and Y, may change in time. Putting the 
kinetic constants equal to unity, we ob- 
tain the system of equations 

- -A + X2Y- BX- X 
dt 

t and 
Stable 

Unstable 
"-I 

Specific 

Fig. 3. Time evolution of second-order excess 
entropy (82S) in cases of (asymptotically) 
stable, marginally stable, and unstable situa- 
tions. 

where Z is a Lyapounov function which 
defines the excess entropy, and u is the 
macroscopic convection velocity. I have 
integrated over the volume V to take into 
account the space dependence of all u. 
We may again calculate the time deriva- 
tive of 82Z, which now takes a more 
complicated form. As the result may be 
found elsewhere (3), I shall not repro- 
duce it here. I would only mention that 
spontaneous excitation of internal con- 
vection cannot be generated from a state 
at rest which is at thermodynamic equi- 
librium. This applies, of course, as a spe- 
cial case to the Bdnard instability. 

Application to Chemical Reactions 

Let us now return to the case of chem- 
ical reactions. A general result is that to 
violate the inequality in Eq. 13 we need 
autocatalytic reactions. More precisely, 
autocatalytic steps are necessary (but 
not sufficient) conditions for the break- 
down of the stability of the thermody- 
namic branch. Let us consider a simple 
example, the so-called "Brusselator," 
which corresponds to the scheme of re- 
action (8), 

A -> X (15a) 

2X + Y ->3X (15b) 

B+ X-Y + D (15c) 

X -E (15d) 

The initial reactants and final products 
are A, B, D, and E, which are main- 
tained constant while the concentrations 
of the two intermediate components, X 

dY Y = BX - X2Y 
dt 

which admits the steady state 

Xo = A, Yo - A 
0-A 

where Xo and Yo are the concentrations 
of X and Y at the steady state. Using the 
thermodynamic stability criterion or nor- 
mal mode analysis, we may show that 
the solution (Eq. 17) becomes unstable 
whenever 

Beyond this critical value of B (Be) we 
have a "limit cycle," that is, any initial 
point in the space X, Y tends to the same 
periodic trajectory. The important point 
is therefore that, in contrast with oscil- 
lating chemical reactions of the Lotka- 
Volterra type, the frequency of oscilla- 
tion is a well-defined function of the mac- 
roscopic variables such as concentra- 
tions and temperatures. The chemical re- 
action leads to coherent time behavior; it 
becomes a chemical clock. In the litera- 
ture this is often called a Hopf bifurca- 
tion. 

When diffusion is taken into account, 
the variety of instabilities becomes prop- 
erly enormous. For this reason the reac- 
tion scheme in Eq. 15 has been studied 
by many investigators over the past 
years. In the presence of diffusion, the 
reaction scheme in Eq. 15 becomes 

ax 
-=A + X2Y 

- BX - 

Y - BX- X2Y+Dy (19b) 
at Dr2 

where Dx and Dy are the diffusion coeffi- 
cients of components X and Y. In addi- 
tion to the limit cycle, we now have the 
possibility of nonuniform steady states. 
We may call it the Turing bifurcation, as 
Turing was the first to notice the possi- 
bility of such bifurcations in chemical ki- 
netics in his classic paper on morphogen- 
esis in 1952 (9). In the presence of dif- 
fusion, the limit cycle may also become 
space-dependent and lead to chemical 
waves. 

Some order can be brought into the re- 
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suits if we consider as the basic solution 
the one corresponding to the thermody- 
namic branch. Other solutions may then 
be obtained as successive bifurcations 
from this basic one, or as higher order 
bifurcations from a nonthermodynamic 
branch, taking place when the distance 
from equilibrium is increased. 

A general feature of interest is that dis- 
sipative structures are very sensitive to 
global features which characterize the 
environment of chemical systems, such 
as their size and form, the boundary con- 
ditions imposed on their surface, and so 
on. All these features influence in a deci- 
sive way the types of instabilities that 
lead to dissipative structures. 

Far from equilibrium, there appears an 
unexpected relation between chemical 
kinetics and the "space-time structure" 
of reacting systems. It is true that the in- 
teractions which determine the values of 
the relevant kinetic constants and trans- 
port coefficients result from short-range 
interactions (valency forces, hydrogen 
bonds, van der Waals forces). However, 
the solutions of the kinetic equations de- 
pend, in addition, on global character- 
istics. This dependence, which on the 
thermodynamic branch, near equilibri- 
um, is rather trivial, becomes decisive in 
chemical systems under conditions far 
from equilibrium. For example, the oc- 
currence of dissipative structures gener- 
ally requires that the system's size ex- 
ceed some critical value. The critical size 
is a complex function of the parameters 
describing the reaction-diffusion proc- 
esses. Therefore, we may say that chem- 
ical instabilities involve long-range order 
through which the system acts as a 
whole. 

There are three aspects that are al- 
ways linked in dissipative structures: the 
function as expressed by the chemical 
equations; the space-time structure, 
which results from the instabilities; and 
the fluctuations, which trigger the in- 
stabilities. The interplay between these 
three aspects leads to most unexpected 
phenomena, including "order through 
fluctuations," which I shall analyze be- 
low. 

x 

Fig. 4. Successive bifurcations. 

but multiple solutions for the value X2. 
It is interesting that bifurcation in- 

troduces, in a sense, "history" into 
physics. Suppose that observation 
shows us that the system whose bifurca- 
tion diagram is represented by Fig. 4 is in 
the state C and came there through an 
increase in the value of X. The inter- 
pretation of this state X implies the 
knowledge of the prior history of the sys- 
tem, which had to go through the bifur- 
cation points A and B. In this way we 
introduce in physics and chemistry a his- 
torical element, which until now seemed 
to be reserved only for sciences dealing 
with biological, social, and cultural phe- 
nomena. 

Every description of a system which 
has bifurcations will imply both determi- 
nistic and probabilistic elements. As we 
shall see in more detail in the next sec- 
tion, the system obeys deterministic 
laws, such as the laws of chemical kinet- 
ics, between two bifurcation points, 
whereas in the neighborhood of the bi- 
furcation points fluctuations play an es- 
sential role and determine the branch 
that the system will follow. 

I shall not go here into the theory of 
bifurcations and its various aspects such 
as, for example, the theory of catastro- 
phes due to Thom (10). These questions 
are discussed in the recent monograph of 
Nicolis and Prigogine (8). I shall also not 
enumerate the examples of coherent 
structures in chemistry and biology that 
are known at present. Many examples 
may be found in (8). 

ent structures? Obviously, a new feature 
has to be introduced. Briefly, this is the 
breakdown of the conditions of validity 
of the law of large numbers; as a result, 
the distribution of reactive particles near 
instabilities is no longer a random distri- 
bution. 

First, I shall indicate what is meant by 
the law of large numbers. To do so I con- 
sider a typical probability description of 
great importance in many fields of sci- 
ence and technology, the Poisson distri- 
bution. This distribution involves a vari- 
able X which may take integral values 
X = 0, 1, 2, 3, .* * . According to the 
Poisson distribution, the probability that 
X = <X> is given by 

>x> pr(X) = e-<x> 
X! (20) 

In Eq. 20, <X> corresponds to the aver- 
age value of X. This law is found to be 
valid in a wide range of situations such as 
the distribution of telephone calls, wait- 
ing time in restaurants, and fluctuations 
of particles in a medium of given concen- 
tration. An important feature of the Pois- 
son distribution is that <X> is the only 
parameter that enters in the distribution. 
The probability distribution is entirely 
determined by its mean. 

From Eq. 20, one obtains easily the 
so-called "variance," which gives the 
dispersion around the mean 

<(8X)2> = <(X - <X>)2> (21) 

The characteristic feature is that, ac- 
cording to the Poisson distribution, the 
dispersion is equal to the average itself 

(22) 

Let us consider a situation in which X is 
an extensive quantity proportional to the 
number of particles N (in a given vol- 
ume) or to the volume V. We then obtain 
for the relative fluctuations the famous 
square root law 

[<(8X)2>]112 
<X> 

1 _ 1 

<X>1/2 N112 or V112 (23) 

Function - Structure 

Fluctuations 

Generally we have successive bifur- 
cations when we increase the value 
of some characteristic parameter (such 
as the bifurcation paramater B in the 
Brusselator scheme). In Fig. 4 we 
have a single solution for the value X, 
1 SEPTEMBER 1978 

The Law of Large Numbers and the 

Statistics of Chemical Reactions 

Let us now turn to the statistical as- 
pects of the formation of dissipative 
structures. Conventional chemical kinet- 
ics is based on the calculation of the av- 
erage number of collisions and more spe- 
cifically on the average number of reac- 
tive collisions. These collisions occur at 
random. However, how can such a 
chaotic behavior ever give rise to coher- 

The order of magnitude of the relative 
fluctuation is inversely proportional to 
the square root of the average. There- 
fore, for extensive variables of order N 
we obtain relative deviations of order 
N-112. This is the characteristic feature of 
the law of large numbers. As a result, we 
may disregard fluctuations for large sys- 
tems and use a macroscopic description. 

For other distributions the mean 
square deviation is no longer equal to the 
average as in Eq. 22. But, whenever the 
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law of large numbers applies, the order 
of magnitude of the mean square devia- 
tion is still the same, and we have 

V (X) finite for V --> (24) 

Let us now consider a stochastic mod- 
el for chemical reactions. As has been 
done often in the past, it is natural to as- 
sociate a Markov chain process of the 
"birth and death" type to a chemical re- 
action (11). This leads immediately to a 
master equation for the probability 
P(X, t) of finding X molecules of species 
X at time t, 

dP(X, t) _ 

dt 

W(X- r --> X) P(X - r, t) - 
r 

> W(X - X + r) P(X, t) (25) 
r 

where W is a transition probability corre- 
sponding to the jump from X - r mole- 
cules of species X to X molecules. On 
the right side of Eq. 25 we have a com- 
petition between gain and loss terms. A 
characteristic difference with the classi- 
cal Brownian motion problem is that the 
transition probabilities, W(X - r -> X) 
or W(X -> X + r), are nonlinear in the 
occupation numbers. Chemical games 
are nonlinear, and this leads to important 
differences. For example, it can be easily 
shown that the stationary distribution of 
X corresponding to the linear chemical 
reaction 

A X- F (26) 

is given by a Poisson distribution (for 
given average values of A and F) (12). 
But it came as a great surprise when Nic- 
olis and Prigogine showed in 1971 (13) 
that the stationary distribution of X, 
which appears as an intermediate in the 
chain 

A + M-> X + M 

2X -> E + D 

500 

0 

IB = 31 

10 

Fig. 5. Distance dependence of the spatial 
correlation function GJX well below the criti- 
cal value of the bifurcation parameter B; 
A = 2, dc = 1, d2 = 4 (d1 and d2 are the dif- 
fusion coefficients of A and B). 

has been studied extensively by Nicolis 
and Turner (16), who have shown that 
this model leads to a "nonequilibrium 
phase transition" quite similar to that de- 
scribed by the classical van der Waals 
equation. Near the critical point as well 
as near the coexistence curve, the law of 
large numbers as expressed by Eq. 24 
breaks down, as <(8X)2> becomes pro- 
portional to a higher power of the vol- 
ume. As in the case of equilibrium phase 
transitions, this breakdown can be ex- 
pressed in terms of critical indices. 

B = 3.5| 
(27a) 

(27b) 500 

is no longer given by the Poisson distri- 
bution. This is very important from the 
point of view of the macroscopic kinetic 
theory. Indeed, as has been shown by 
Malek-Mansour and Nicolis (14), the 
macroscopic chemical equations gener- 
ally must be corrected by terms associat- 
ed with deviations from the Poisson dis- 
tribution. This is the basic reason why 
today so much attention is being devoted 
to the stochastic theory of chemical reac- 
tions. 

For example, the Schlogl reaction 
(15), 

A + 2X = 3X (28a) 

X = B (28b) 
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Fig. 6. As the bifurcation parameter B ap- 
proaches the critical value, the range of GiJX 
increases slightly with respect to the behavior 
shown in Fig. 5. 

In the case of equilibrium phase transi- 
tions, fluctuations near the critical point 
not only have a large amplitude but also 
extend over large distances. Lemar- 
chand and Nicolis (17) have investigated 
the same problem for nonequilibrium 
phase transitions. To make the calcu- 
lations possible, they considered a se- 
quence of boxes. In each box the Brus- 
selator type of reaction (Eq. 15) is taking 
place. In addition, there is diffusion be- 
tween one box and the other. Using the 
Markov method, they then calculated 
the correlation between the occupation 
numbers of X in two different boxes. 
One would expect that chemical inelastic 
collisions together with diffusion would 
lead to a chaotic behavior. But that is not 
the case. In Figs. 5 through 7 the correla- 
tion functions for below and near the 
critical state are represented graphically. 
It is clear that near the critical point we 
have long-range chemical correlations. 
Like the earlier systems that I have con- 
sidered, this system acts as a whole in 
spite of the short-range character of the 
chemical interactions. Chaos gives rise 
to order. Moreover, numerical simula- 
tions indicate that it is only in the limit of 
the number of particles, N -> xo, that we 
tend to "long-range" temporal order. 

To understand this result at least quali- 
tatively, let us consider the analogy with 
phase transitions. When we cool down a 
paramagnetic substance, we come to the 
so-called Curie point, below which the 
system behaves like a ferromagnet. 
Above the Curie point, all directions 
play the same role. Below the Curie 
point, there is a privileged direction cor- 
responding to the direction of magnet- 
ization. 

Nothing in the macroscopic equation 
determines which direction the magnet- 
ization will take. In principle, all direc- 
tions are equally likely. If the ferromag- 
net would contain a finite number of par- 
ticles, this privileged direction would not 
be maintained in time. It would rotate. 
However, if we consider an infinite sys- 
tem, then no fluctuations whatsoever can 
shift the direction of the ferromagnet. 
The long-range order is established once 
and for all. 

There is a striking similarity between 
the ferromagnetic system and the case of 
oscillating chemical reactions. When we 
increase the distance from equilibrium, 
the system begins to oscillate. It will 
move along the limit cycle. The phase on 
the limit cycle is determined by the initial 
fluctuation and plays the same role as the 
direction of magnetization. If the system 
is finite, fluctuations will progressively 
take over and perturb the rotation. How- 
ever, if the system is infinite, then we 

SCIENCE, VOL. 201 



may obtain a long-range temporal order 
very similar to the long-range space or- 
der in the ferromagnetic system. We see, 
therefore, that the appearance of a peri- 
odic reaction is a process that breaks 
time symmetry exactly as ferromagnet- 
ism is a process that breaks space sym- 
metry. 

The Dynamic Interpretation of the 

Lyapounov Function 

I shall now consider more closely the 
dynamic meaning of the entropy and 
more specifically the Lyapounov func- 
tion 82S that I have used above. 

Let us start with a very brief summary 
of Boltzmann's approach to this prob- 
lem. Even today, Boltzmann's work ap- 
pears as a milestone. It is well known 
that an essential element in Boltzmann's 
derivation of the Ye-theorem was the re- 
placement of the exact dynamic equa- 
tions (as expressed by the Liouville 
equation to which I shall return later) by 
the kinetic equation for the velocity dis- 
tribution function f of the molecules, 

af + v = dw dvA1[f'f -ff1] 
(29) 

where dw is the effective solid angle in 
the collision, o- is the cross section, and v 
is the velocity. 

Once this equation is admitted, it is 
easy to show that Boltzmann's S9-quanti- 
ty, 

e= |dvflogf (30) 

satisfies the inequality 

-'d~O 0 ~ (31) 
dt 

and thus plays the role of a Lyapounov 
function. 

The progress achieved through Boltz- 
mann's approach is striking. Still, many 
difficulties remain (18). First, we have 
practical difficulties, as, for example, the 
difficulty of extending Boltzmann's re- 
sults to more general situations (for ex- 
ample, dense gases). Kinetic theory has 
made striking progress in the last few 
years; yet, when one examines recent 
texts on kinetic theory or nonequilibrium 
statistical mechanics, one does not find 
anything similar to Boltzmann's C-theo- 
rem, which remains valid in more gener- 
al cases. Therefore, Boltzmann's result 
remains quite isolated, in contrast to the 
generality we attribute to the second law 
of thermodynamics. 

In addition, we have theoretical diffi- 
culties. The most serious is probably 
1 SEPTEMBER 1978 
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Fig. 7. Critical behavior of the spatial correla- 
tion function G-xx for the same values of pa- 
rameters as in Fig. 5. The correlation function 
displays both linear damping with distance 
and spatial oscillations with wavelength equal 
to that of the macroscopic concentration pat- 
tern. 

Loschmidt's reversibility paradox. In 
brief, if we reverse the velocities of the 
molecules, we come back to the initial 
state. During this approach to the initial 
state Boltzmann's 9-theorem (Eq. 31) is 
violated. We have "antithermodynamic 
behavior." This conclusion can be veri- 
fied, for example, by computer simula- 
tions. 

The physical reason for the violation 
of Boltzmann's i-theorem lies in the 
long-range correlations introduced by 
the velocity inversion. One would like to 
argue that such correlations are ex- 
ceptional and may be disregarded. How- 
ever, how should one find a criterion to 
distinguish between abnormal correla- 
tions and normal correlations, especially 
when dense systems are considered? 

The situation becomes even worse 
when we consider, instead of the veloc- 
ity distribution, a Gibbs ensemble corre- 
sponding to phase density p. Its time 
evolution is given by the Liouville equa- 
tion, 

i = Lp (32) 

where Lp is the Poisson bracket i{H,p} 
in classical dynamics and is the commu- 
tator [H,p] in quantum mechanics (H is 
the Hamiltonian). If we consider positive 
convex functionals such as 

= p2 dp dq> 0 (33) 

where q is the coordinate and p is the 
momentum conjugate to q, or in quan- 
tum mechanics 

Q = trp+p > 0 (34) 

it is easily shown that, as a consequence 
of Liouville's equation (Eq. 32), 

(35) dtl = 
dt 

Therefore, 12 as defined in Eqs. 33 or 34 
is not a Lyapounov function, and the 
laws of classical or quantum dynamics 
seem to prevent us from constructing a 
Lyapounov functional that would play 
the role of the entropy. 

For this reason it has often been stated 
that irreversibility can only be in- 
troduced into dynamics through a sup- 
plementary approximation such as 
coarse-graining added to the laws of dy- 
namics (19). I have always found it dif- 
ficult to accept this conclusion, especial- 
ly because of the constructive role of 
irreversible processes. Can dissipative 
structures be the result of mistakes? 

We obtain a hint about the direction in 
which the solution of this paradox may 
lie by inquiring why Boltzmann's kinet- 
ics permits one to derive an tY-theorem 
whereas the Liouville equation does not. 
Liouville's equation (Eq. 32) is obvious- 
ly Lt-invariant. If we reverse both the 
sign of the Liouville operator L (this can 
be done in classical dynamics by velocity 
inversion) and the sign of t, the Liouville 
equation remains invariant. On the other 
hand, it can be easily shown (18) that the 
collision term in the Boltzmann equation 
breaks the Lt-symmetry as it is even in 
L. We may therefore rephrase our ques- 
tion by asking: How can we break the Lt- 
symmetry inherent in classical or quan- 
tum mechanics? Our point of view has 
been that the dynamic and thermo- 
dynamic descriptions are, in a certain 
sense, "equivalent" representations of 
the evolution of the system connected by 
a nonunitary transformation. Let me 
briefly indicate how we may proceed. 
The method that I follow has been devel- 
oped in close collaboration with my col- 
leagues in Brussels and Austin (20-22). 

Nonunitary Transformation Theory 

As Eq. 34 has proved inadequate, we 
start with a Lyapounov function of the 
form 

Q = trp+Mp - 0 (36) 

(where M is a positive operator) with a 
nonincreasing time derivative 

dfl 
dt (37) 

This is certainly not always possible. In 
simple dynamic situations when the mo- 
tion is periodic in either classical or 
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quantum mechanics, no Lyapounov 
function may exist as the system returns 
after some time to its initial state. The 
existence of M is related to the type of 
spectrum of the Liouville operator. In 
the frame of classical ergodic theory this 
question has recently been studied by 
Misra (23). I shall pursue here certain 
consequences of the possible existence 
of the operator M in Eq. 36, which may 
be considered as a "microscopic repre- 
sentation of entropy." As this quantity is 
positive, a general theorem permits us to 
represent it as a product of an operator, 
say A-1, and its hermitian conjugate 
(A-')+ (this corresponds to taking the 
"square root" of a positive operator) 

M = (A-1)+A-1 (38) 

Inserting this in Eq. 36, we obtain 

Q = tr p+5 (39) 

with 

p = A-p (40) 

This is a most interesting result, because 
Eq. 39 is precisely the type of equation 
we were looking for in the first place. But 
we see that this expression can only exist 
in a new representation related to the 
preceding by the transformation in Eq. 
40. 

First let us write the new equations of 
motion. Taking into account Eq. 40, we 
obtain 

i 
05 

= (/p5 (41) 
at 

with 

0 = A-1LA (42) 

Now let us use the solution of the equa- 
tions of motion (Eq. 32). We may replace 
Eqs. 36 and 37 by the more explicit in- 
equalities 

f(t) = tr p+(o)eiLtM e-iLtp(o) < 0 

and 

dt = -trp+(o)eiLt x 
dt 

i (ML - LM)e-itp(o) < 0 (44) 

The microscopic "entropy operator" M 
can therefore not commute with L. The 
commutator represents precisely what 
could be called the "microscopic en- 
tropy production." 

We are, of course, reminded of Hei- 
senberg's uncertainty relations and 
Bohr's complementarity principle. It is 
most interesting to find here also a non- 
commutativity, but now between dy- 
namics as expressed by the operator L 
and "thermodynamics" as expressed by 
M. We therefore have a new and most 
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interesting type of complementarity be- 
tween dynamics, which implies the 
knowledge of trajectories or wave func- 
tions, and thermodynamics, which im- 
plies entropy. 

When the transformation to the new 
representation is performed, we obtain 
for the entropy production (Eq. 44) 

dt = -tr p+(o)ei'+ti(D - I +) 

e-Ap?(o) < 0 (45) 

This result implies that the difference be- 
tween E and its hermitian adjoint q+ 
does not vanish, 

i(q) - T+) > 0 (46) 

Therefore, we reach the important con- 
clusion that the new operator of motion 
which appears in the transformed Liou- 
ville equation (Eq. 41) can no longer be 
hermitian as was the Liouville operator 
L. This shows that we have to leave the 
usual class of unitary (or antiunitary) 
transformations and proceed to an exten- 
sion of the symmetry of quantum me- 
chanical operators. Fortunately, it is 
easy to determine the class of transfor- 
mations that we have to consider now. 
Average values can be calculated both in 
the old and in the new representation. 
The result should be the same; in other 
words, we require that 

(A) = tr A+p = tr A+p (47) 

Moreover, we are interested in transfor- 
mations which will depend explicitly on 
the Liouville operator. This is indeed the 
very physical motivation of the theory. 
We have seen that the Boltzmann type 
equations have a broken Lt-symmetry. 
We want to realize precisely this new 
symmetry through our transformation 
(20). This can only be done by consid- 
ering L-dependent transformations A(L). 
Using finally the fact that the density p 
and the observables have the same equa- 
tions of motion, but with L replaced by 
-L, we obtain the basic condition 

A-1(L) = A+(-L) (48) 

which replaces here the usual condition 
of unitarity imposed on quantum me- 
chanical transformations. 

It is not astonishing that we do indeed 
find a nonunitary transformation law. 
Unitary transformations are very much 
like changes in coordinates, which do 
not affect the physics of the problem. 
Whatever the coordinate system, the 
physics of the system remains unaltered. 
But here we are dealing with quite a dif- 
ferent problem. We want to go from one 
type of description, the dynamic one, to 
another, the "thermodynamic" one. 

This is precisely the reason why we need 
a more drastic type of change in repre- 
sentation as expressed by the new trans- 
formation law (Eq. 48). 

I have called this transformation a 
"star-unitary" transformation and in- 
troduced the notation 

A*(L) = A+(-L) (49) 

I shall call A* the "star-hermitian" oper- 
ator associated with A (star always 
means the inversion L -> -L). Then Eq. 
48 shows that for star-unitary transfor- 
mations the inverse of the transforma- 
tion is equal to its star-hermitian con- 
jugate. 

Let us now consider Eq. 42. Using the 
fact that L as well as Eqs. 48 and 49 are 
hermitian, we obtain 

,* = ?+(-L) = -?(L) (50) 

or 

(iq)* = i/ (51) 

The operator of motion is a "star-hermi- 
tian," a most interesting result. To be a 
star-hermitian, an operator may be either 
even under L-inversion (that is, it does 
not change sign when L is replaced by 
-L) or antihermitian and odd (odd 
means that it changes sign when L is re- 
placed by -L). A general star-hermitian 
operator can therefore be written as 

(52) 

Here the superscripts e and o refer re- 
spectively to the even and the odd part of 
the new time evolution operator (. The 
condition of dissipativity (Eq. 46), which 
expresses the existence of a Lyapounov 
function l, now becomes 

id1 > 0 (53) 

It is the even part which gives the "en- 
tropy production." 

Let me summarize what has been 
achieved. We obtain a new form of the 
microscopic equation (as is the Liouville 
equation in classical or quantum me- 
chanics), which displays explicitly a part 
which may be associated with a Lyapou- 
nov function. In other words, the equa- 
tion 

i a = (t D + q)p at (54) 

contains a "reversible" part, F, and an 
"irreversible" part, (. The symmetry of 
this new equation is exactly that of 
Boltzmann's phenomenological kinetic 
equation, as the flow term is odd and the 
collision term is even in L-inversion. 

The macroscopic thermodynamic dis- 
tinction between reversible and irrevers- 
ible processes has in this way been trans- 
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posed into the microscopic description. 
We have obtained what could be consid- 
ered as the "missing link" between mi- 
croscopic reversible dynamics and mac- 
roscopic irreversible thermodynamics. 
The scheme is as follows: 

Nonunitary 
/transformation 

Microscopic "reversible" 
description 

I ^^< Microscopic description 
? j displaying irreversible 

/I / processes 

Macroscopic irreversible \ 
description 

Averaging procedures 

The effective construction of the 
Lyapounov function Qf (Eq. 36), through 
the transformation A, involves a careful 
study of the singularities of the resolvent 
corresponding to the Liouville operator 
(21). 

For small deviations from thermo- 
dynamical equilibrium it can be shown, 
as has been done recently by Theodo- 
sopulu et al. (24), that the Lyapounov 
functional II (Eq. 36) reduces precisely 
to the macroscopic quantity 82S (Eq. 9) 
when in addition only the time evolution 
of conserved quantities is retained. We 
therefore have now established in full 
generality the link between nonequilibri- 
um thermodynamics and statistical me- 
chanics at least in the linear region. This 
is the extension of the result that was ob- 
tained long ago in the frame of Boltz- 
mann's theory, valid for dilute gases 
(25). 

Concluding Remarks 

The inclusion of thermodynamic irre- 
versibility through a nonunitary transfor- 
mation theory leads to a deep alteration 
in the structure of dynamics. We are led 
from groups to semigroups, from trajec- 
tories to processes. This evolution is in 
line with some of the main changes in our 
description of the physical world during 
this century. 

One of the most important aspects of 
Einstein's theory of relativity is that we 
cannot discuss the problems of space 

and time independently of the problem of 
the velocity of light which limits the 
speed of propagation of signals. Similar- 
ly, the elimination of "unobservables" 
has played an important role in the basic 
approach to quantum theory initiated by 
Heisenberg. 

The analogy between relativity and 
thermodynamics has often been empha- 
sized by Einstein and Bohr. We cannot 
propagate signals with arbitrary speed, 
and we cannot construct a perpetuum 
mobile forbidden by the second law. 

From the microscopic point of view 
this last interdiction means that quan- 
tities that are well defined from the point 
of view of mechanics cannot be observ- 
ables if the system satisfies the second 
law of thermodynamics. For example, 
the trajectory of the system as a whole 
cannot be an observable. If it were, we 
could at every moment distinguish two 
trajectories and the concept of thermal 
equilibrium would lose its meaning. Dy- 
namics and thermodynamics limit each 
other. 

It is interesting that there are other 
reasons which at the present time seem 
to indicate that the relation between dy- 
namic interaction and irreversibility may 
play a deeper role than was conceived 
until now. In the classical theory of in- 
tegrable systems, which has been so im- 
portant in the formulation of quantum 
mechanics, all interactions can be elimi- 
nated by an appropriate canonical trans- 
formation. Is this really the correct pro- 
totype of dynamic systems to consider, 
especially when situations involving ele- 
mentary particles and their interactions 
are included? Must we not first go to a 
noncanonical representation, which per- 
mits us to disentangle reversible and irre- 
versible processes on the microscopic 
level and then only to eliminate the re- 
versible part to obtain well-defined but 
still interacting units? 

These questions will probably be clari- 
fied in the coming years. But already the 
development of the theory permits us to 
distinguish various levels of time: time as 
associated with classical or quantum dy- 
namics, time associated with irreversibil- 

ity through a Lyapounov function, and 
time associated with "history" through 
bifurcations. I believe that this diversifi- 
cation of the concept of time permits a 
better integration of theoretical physics 
and chemistry with disciplines dealing 
with other aspects of nature. 
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