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trauma. 

Septic complications after multiple 
trauma, burn injury, and major surgery 
are a major clinical problem despite ad- 
vances in surgical techniques, anti- 
microbial therapy, and patient mon- 
itoring (1, 2). Resistance to septicemia 
involves both nonspecific and specific 
factors; however, recent studies have 
emphasized the function of the retic- 
uloendothelial system (RES) as a de- 
terminant of survival after severe trauma 
and shock (3-5). The RES is depressed 
after major surgery (4-7), blunt trauma 
(4, 5, 8), burn injury (4, 5), and hemor- 
rhage (4, 5); and therapeutic techniques 
to reverse systemic RES failure have not 
been developed. 

Previous studies (4, 9-11) have impli- 
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hours prior to the experiment. The experiments 
were performed from 1000 hours to 1400 hours. 
The rats were lightly anesthetized with ether and 
artificially ventilated. A PE 50 catheter was in- 
serted into the femoral artery to record blood 
pressure. Blood pressure and lead II of the elec- 
trocardiogram were recorded continuously on a 
Gilson multichannel recorder. The heart was ex- 
posed by left thoracotomy between the third and 
fourth ribs. After ligation the thorax was closed 
and the pneumothorax removed by direct hypo- 
dermic aspiration. Animals were ventilated for 
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were awake approximately 15 to 20 minutes af- 
ter ligation. 
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cated opsonic ac-surface binding glyco- 
protein (a2SB-glycoprotein) as a key de- 
terminant of RES phagocytic function. 
The amount of this protein in the serum 
is decreased after trauma, a decrease 
which contributes to the observed RES 
phagocytic depression (4). Reticuloen- 
dothelial (RE) cells in the liver and 
spleen remove bacteria, microaggregates 
of fibrin, injured platelets, denatured 
protein, and immune complexes from the 
blood, and thus serve as a selective 
filter or clearance mechanism to protect 
the pulmonary and systemic vascular 
beds from potential microembolization 
and injury (3, 4). Immunologic and bio- 
chemical analyses of purified human op- 
sonic a2-SB-glycoprotein (12-14) have 
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revealed that it is identical to cold- 
insoluble globulin or plasma fibronectin, 
a major protein fraction recoverable in 
human plasma cryoprecipitate. 

In our study, we intravenously infused 
fresh plasma cryoprecipitate into severe- 
ly ill, septic surgical and trauma patients 
with marked opsonic deficiency and RES 
failure, and tested for augmented sys- 
temic defense against persistent septi- 
cemia and associated pulmonary in- 
sufficiency. Opsonic replacement was 
quantified by bioassay (5, 15) and immu- 
noassay (10, 13), and the clinical course 
of the patients before and after cryopre- 
cipitate therapy was monitored. 

The bioassay for opsonic activity in 
serum was measured relative to Kupffer 
cell phagocytosis by liver slice assay (6, 
8, 15) with the gelatinized 13I-RE test 
lipid emulsion and heparinized serum (5, 
9, 14, 15). Immunoreactive opsonic 
caSB-glycoprotein from serum was mea- 
sured in micrograms per milliliter by 
electroimmunoassay or rocket immuno- 
electrophoresis (10, 13, 16) with mono- 
specific antiserum (9, 11, 13). Isolation of 
the protein from serum involves a series 
of steps (9, 11, 13), including ammonium 
sulfate fractionation, high-voltage free- 
flow electrophoresis, and Sepharose 4B 
gel filtration. An alternative purification 
with a gelatin-Sepharose affinity column 
in the presence of mercaptoethanol is al- 
so effective. Immunochemical purity of 
the protein was tested by electro- 
immunoassay with unabsorbed, poly- 
specific antiserum, and homogeneity was 
ascertained by gradient polyacrylamide 
gel electrophoresis (10, 11, 13). 

Cryoprecipitate (17) was intraven- 
ously infused as a continuous dose 
throughout a 60-minute interval. Both bi- 
ologically active and immunoreactive 
serum opsonic a2SB-glycoprotein were 
measured before and at least at 1/2 4, 
and 24 hours after infusion. Circulating 
white blood cell levels, body temper- 
ature, blood and tissue fluid bacterial 
cultures, arterial blood gas determina- 
tions, and standard cardiopulmonary 
measurements were recorded. 

Patients displayed elevated a,SB-gly- 
coprotein in their serum during the 1/2- to 
4-hour interval after cryoprecipitate in- 
fusion. The three patients presented in 
this study (18-20) showed an average in- 
crease in immunoreactive opsonic pro- 
tein of 94 ,Lg/ml above preinfusion levels 
by 30 minutes after treatment. By 4 
hours, the average level of a2SB-glyco- 
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by 30 minutes after treatment. By 4 
hours, the average level of a2SB-glyco- 
protein in the serum, determined by elec- 
troimmunoassay increased by (on the av- 
erage) 172 /g/ml. Patient 2 (Fig. 1) expe- 
rienced a phase of rapid serum depletion 
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Cryoprecipitate Reversal of Opsonic a2-Surface Binding 

Glycoprotein Deficiency in Septic Surgical and Trauma Patients 

Abstract. Human opsonic a2-surface binding glyoprotein (a2SB-glycoprotein), a 
molecule having immunologic identity with an amino acid composition similar to 
cold-insoluble globulin, is concentrated in a cryoprecipitate of plasma. Septic surgi- 
cal and trauma patients manifesting opsonic a2SB-glycoprotein deficiency and asso- 
ciated reticuloendothelial system dysfunction were treated by intravenous infusion of 
cryoprecipitate. This therapy restored circulating bioreactive and immunoreactive 
opsonin and improved their septicemia, pulmonary insufficiency, and duration of 
recovery. Cryoprecipitate infusion may offer a new approach to the treatment of 
septic injured patients in preventing multiple organ failure; measurement of immuno- 
reactive serum opsonic a2SB-glycoprotein may provide a noninvasive index of retic- 
uloendothelial system function and patient status during severe sepsis that follows 
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of a2SB-glycoprotein; however, later 
elevation of his serum level was associat- 
ed with a stabilized clinical course. 

We typically observed an increase in 
immunoreactive opsonin during the early 
stages after infusion, especially at the 1/2 
to 4-hour interval. This period can be fol- 
lowed during the next 48 to 72 hours by a 
progressive decline of the protein to con- 
centrations typical of those measured be- 
fore infusion, especially when the patient 
had a severe focus of injury. Within the 3 
days after therapy, particularly in pa- 
tients with improved clinical conditions, 
the serum concentration of this protein 
gradually rose, concurrently with patient 
stabilization and reversal of the febrile 
and septic state. The clinical parameters 
of the three septic patients before and af- 
ter cryoprecipitate therapy were com- 
pared (Table 1). The most consistent re- 
sponse was observed, between 12 and 24 
hours, as a rapid reversal of the febrile 
state and improvement in pulmonary 
function. In contrast to a deteriorating 
clinical condition that was severe and 
unmanageable by routine ventilatory 
support (two patients) and antimicrobial 
agents (three patients) before cryopre- 
cipitate infusion, the patients experi- 
enced improvement characterized by in- 
creased alertness, heightened pulmonary 
function, stabilized hematological func- 
tion, lowered body temperature, and sur- 
vival. 

These observations, coupled with our 
previous demonstration that intravenous 
therapy with the purified opsonic a2SB- 
glycoprotein (21) can prevent RES de- 
pression in animals after surgery, sug- 
gest that the replacement of this protein 
effectively reversed RES phagocytic de- 
pression. Previous attempts to reverse 
a2SB-glycoprotein deficiency have been 
limited by a shortage of the purified hu- 
man protein (9, 11, 13). Although the 
techniques for isolating pure cold-in- 
soluble globulin (22) or plasma fibronec- 
tin (23) yield a relatively pure protein for 
characterization studies, the isolated 

Fig. 1. Typical pattern of im- 
munoreactive opsonic a2SB- 
glycoprotein in the serum be- 
fore and after intravenous 
cryoprecipitate therapy. The 
above response was observed 
in patient 2 (19). The standard 
curve (from 2 to 20 percentt g 

5 

serum) was constructed from ' = :. .: 
the four rockets to the left. Im- ____ 
munoreactive levels in patient 2 5 10 20 1 2 3 4 5 6 7 8 9 10 
2 were measured with a 10 per- Standard 
cent test serum concentration. serum (%) 
Rockets 1 to 3 represent serum a2SB-glycoprotein at 7:00 p.m. (6 September 1977), at 9:00 a.m. 
(7 September 1977), and 12:30 p.m. (7 September 1977) before cryoprecipitate infusion. Rockets 
4 to 10 represent serum obtained at 1/2, 4, 24, 48, 72, 96, and 120 hours after therapy. 

protein appears to lack biological activi- 
ty (12, 14). In contrast, the isolation of 
the human opsonic a2SB-glycoprotein ei- 
ther by our methods (9, 10, 12, 13) or by 
affinity chromatography results in a puri- 
fied protein that retains antigenic and bi- 
ological activity. Comparison of cold-in- 
soluble globulin and human opsonic 
a2SB-glycoprotein has revealed their 
identity (12, 14). 

The correlation between the bioas- 
sayable and immunoreactive levels of 
a2SB-glycoprotein and in vivo RES 
phagocytic clearance capacity (3, 10, 
15), and the correlation between RES 
function and shock resistance (4, 5, 8) 
suggest that measuring the a2SB-glyco- 
protein in serum may provide a non- 
invasive monitor of RES function and 
patient response to therapy after shock 
(21). The apparent increase that we ob- 
served in immunoreactive opsonic pro- 
tein levels for several hours after the ter- 
mination of cryoprecipitate infusion may 
reflect increased endogenous release or 
decreased consumptive depletion of the 
glycoprotein during the early period after 
therapy. Since data from studies done in 
tissue culture suggest that cold-insoluble 
globulin or fibronectin is synthesized by 
fibroblasts and endothelial cells (23, 24), 
the elevation in the blood of a2SB-glyco- 
protein seen late may reflect recovery of 
cellular integrity after injury and septi- 
cemia. 

The increase in the bioassayable ac- 
tivity of a2SB-glycoprotein is typically 
greater than the relative elevation of im- 
munoreactive protein; this may be due to 
any one of the multiple factors that can 
influence liver slice uptake of test parti- 
cles in the bioassay, such as non- 
phagocytic adherence of agglutinated 
particles or Kupffer cell ingestion of the 
test colloid. However, light and electron 
microscopic and autoradiographic stud- 
ies have verified that Kupffer cells do in- 
gest the protein-coated RE test lipid 
emulsion (7) in the liver slice assay, and 
nonphagocytic adherence of agglutinated 
particles to Kupffer cells is more appar- 
ent with inert particles such as colloidal 
gold (7). 

Although extensive biochemical stud- 
ies of cold-insoluble globulin or fibronec- 
tin have been performed (22, 23), no 
prominent physiologic function for the 
protein has been identified (12). The data 
in this report, coupled with those that 
link malignant disease, septicemia, and 
disturbed hemostasis to RES distur- 
bances and alterations in a2SB-glycopro- 
tein (2, 3, 5, 12), support a role for cold- 
insoluble globulin in macrophage host 
defense mechanisms. This role may re- 
late to the macrophage's discriminating 
(4, 5, 9, 10) "self' from either "nonself" 
or "altered self" in removing denatured 
protein microaggregates and products of 
cellular injury (3, 25). 

Table 1. Clinical response of septicemic surgical and trauma patients to intravenous a2SB-glycoprotein therapy. Values presented for each patient 
(18-20) represent the average of multiple determinations over the 48-hour period before or after therapy. Abbreviations: Pao,, partial arterial 
pressure of 02; PEEP, positive end-expiratory pressure; and Fio2, fraction of inspired 02. 

Pa- Time of Pulse TePao, Fio, 
perature cells tient measurement (beat/min) perature cell(torr) (O"F)*(cell/mm3) 

1 Before treatment 88-122 101-103 2700-3300 
1 After treatment 88-100 98-99 4200-4700 
2 Before treatment 130-160 103-105 11,600-37,900 88 on 10 cm-H20 PEEP 50 
2 After treatment 88-100 100-102 13,000-16,500 74 on 5 cm-H20 PEEP 50 
3 Before treatment 96-103 103-105 18,500-22,800 53 on 5 cm-H20 PEEP 40 
3 After treatment 88-110 99-100 16,600-17,400 117 on 5 cm-H2O PEEP 40 

*Degrees Fahrenheit equal 9/5 degrees Celsius plus 32. 
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The phagocytic clearance failure of he- 
patic Kupffer cells is associated with an 
increased pulmonary localization of 
blood-borne particulate matter (4) that 
appears to reflect microembolization of 
the microcirculation; a similar event may 
occur in peripheral vascular beds. After 
surgery, or traumatic or thermal injury, 
especially when sepsis or endotoxemia is 
present, there is an increased potential 
for disseminated intravascular coagu- 
lation and generation of circulating mi- 
croaggregates and immune complexes. 
All these factors contribute to a pulmo- 
nary insufficiency after trauma (4, 26, 
27). Improved pulmonary function in 
septic surgical and trauma patients after 
cryoprecipitate infusion may be due to 
an increase in opsonin-mediated RES 
clearance of such blood-borne sub- 
stances. The finding that opsonic a,SB- 
glycoprotein deficiency induced RE 
blockade and exaggerated the degree of 
pulmonary insufficiency after experi- 
mentally induced low-grade intravas- 
cular coagulation (28) supports the con- 
cept that liver RES clearance of blood- 
borne particulates is closely associated 
with multiple organ failure after trauma 
or burn, especially in patients with 
severe septicemia. An analogous pat- 
tern of "consumptive opsoninopathy" 
has been discussed by Alexander et al. 
(29) in their studies on altered leuko- 
cyte phagocytosis of bacteria in septic 
surgical and burn patients. 

The reversal of opsonic deficiency and 
the improvement in patient health ob- 
served after infusion of cryoprecipitate 
suggests an important role for RES func- 
tion in cardiopulmonary function and 
survival during septic shock. Cryopre- 
cipitate (30) infusion or alternative ad- 
ministration of the purified protein may 
provide an approach for treating septic 
injured patients; measuring both immu- 
noreactive (31) and bioreactive (32) lev- 
els of opsonic oaSB-glycoprotein offers a 
noninvasive method for indirectly mon- 
itoring RE function. 
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