from the accounts. Military consumption of nuclear energy directly, in detonations and reactors, and indirectly, in weapons manufacture, raises questions that are at least as vital to the world as those raised by other uses of energy.

KIRK R. SMITH*

Environmental Health Sciences and Energy and Resources Group, University of California, Berkeley 94720

References and Notes

- S. H. Schurr and B. C. Netschert, Energy in the American Economy, 1850–1970 (Johns Hopkins Press for Resources for the Future, Baltimore, 1960); C. Starr, Sci. Am. 224 (No. 3), 36 (1971); 1960); C. Starr, Sci. Am. 224 (No. 3), 36 (1971); Stanford Research Institute, Patterns of Energy Consumption in the U.S. – 1968) (Government Printing Office, Washington, D.C., 1972); H. H. Landsberg, Science 184, 247 (1974); Energy Pol-icy Project of the Ford Foundation, A Time To Choose (Ballinger, Cambridge, Mass., 1974); Project Independence Report (Federal Energy Administration, Washington, D.C., 1974); W. G. Dupree and J. S. Corsentino, U.S. Energy Through the Year 2000 (Revised) (Department of the Interior, Washington, D.C., 1975). Energy Perspectives—2 (Department of the In-
- 2
- the interior, Washington, D.C., 19/5). *Energy Perspectives*—2 (Department of the In-terior, Washington, D.C., 1976). *Statistical Data of the Uranium Industry* (Pub-lication GJO-100(77) (Energy Research and De-velopment Administration, Grand Junction, Colo., 1977). Import figures for the years before 1956 were obtained from the Division of Urani-um Resources and Development Energy Re-servers. um Resources and Development, Energy Re-search and Development Administration, Washington, D.C.
- 4. H. Krugmann and F. von Hippel, Science 197, 883 (1977).
- 5. In this calculation I assume that naval fuel has a ⁹⁰Sr yield similiar to that of commercial reactors (about 4 percent) and that the plutonium produc-
- (about 4 percent) and that the plutonium production reactors yield about 5.7 percent (4).
 6. J. Schroder, K. O. Munnich, D. H. Ehhalt, Nature (London) 233, 614 (1971).
 7. W. S. Diethorn and W. L. Stockho, Health Phys. 23, 653 (1972); Krypton-85 in the Atmo--Accumulation, Biological Significance,

- and Control Technology (Publication NCRP 44, National Council on Radiation Protection and Measurements, Washington, D.C., 1975).
 8. D. E. Bernhardt, A. A. Moghissi, J. A. Coch-ran, in Noble Gases, R. Stanley and A. A. Mog-hissi, Eds. (Conference-730915, Environmental Protection Agency, Washington, D.C., 1973), nn 4-19.
- Y. Nishiwaki, Progr. Nucl. Energy Ser. 12 2, 517 (1969).
- Several observers have noted the discrepancy between the ⁸⁵Kr inventory indicated by atmo-spheric measurements and that estimated from 10. announced production figures (8)
- announced production figures (8). Report of the Liquid Metal Fast Breeder Reac-tor Program Review Group (Publication ERDA-1, Energy Research and Development Adminis-tration, Washington, D.C., 1975) lists the life-time requirement of U_3O_8 for a 1-GW (electrical) pressurized water reactor (PWR) as 5330 short tons (1 short ton = 0.91 metric ton), including the initia earce and accurate a 40 user lifetime 11. the initial core and assuming a 40-year lifetime The initial control and assuming a 40-year methic, S8 percent average capacity factor, 0.2 percent enrichment tails assay, and 33 percent thermal efficiency. The average between a PWR and a boiling water reactor is 5240 tons. This trans-lates into about 2.0×10^8 Btu's per pound of U₂O₂, which is much less than the total fission energy available. Another possible method of calculating the energy content of U_3O_8 would be to use the potential energy contained in the 235 U isotope only. The resultant energy content is nearly the same as that inferred by the lifetime requirements for a light-water reactor. 12.
- Annual Reports to Congress (Atomic Energy Commission, Washington, D.C., 1963–1974). M. W. Carter and A. A. Moghissi, *Health Phys.*
- 13. 33. 55 (1977
- Hearings before the Joint Committee on Atomic Energy, "Fallout from Nuclear Weapons Tests" (86th Congress, 1st session, 1959). 14.
- "Announced U.S. Nuclear Tests and Statistics for 1975" (Nevada Operations Office, Energy 15 Research and Development Administration, Las Vegas, 1976). 16. Radioactivity in the Marine Environment (Na-
- tional Academy of Sciences, Washington, D.C.,
- 17.
- 1971), p. 29. J. E. Moore, Ed., Jane's Fighting Ships (Jane's Yearbooks, London, 1976). Present address: East-West Center, Resource Systems Institute, 1777 East-West Road, Honolulu, Hawaii 96848

16 September 1977; revised 25 April 1978

Evolution of a Nitrogen Atmosphere on Titan

Abstract. Photochemical calculations indicate that if NH₃ outgassed from Titan it should have been converted to a dense N_2 atmosphere during the lifetime of the satellite. A crucial step in the process involves a gas phase reaction of $N_{2}H_{4}$ with H. The most favorable conditions for this step would be the intermediate production of a CH_4 - H_2 greenhouse capable of raising the gas temperature to 150°K. Subsequently about 20 bars of N_2 could have evolved. The pressure-induced opacity of 20 bars of N_2 should suffice to explain the recently measured 200°K surface temperature. Unlike the situation on Jupiter, NH_3 is not recycled on Titan by reactions involving N_2 or N_2H_4 . This may explain the failure of recent attempts to detect NH_3 in the upper atmosphere of Titan.

Hunten (1) first proposed that N_2 might be the dominant gas in the atmosphere of Titan. Ammonia may have been irreversibly converted (1, 2) to other nitrogen-bearing compounds such as N₂, N₂H₄, and CH₃NH₂. Recent measurements by Owen (3) place 30 cm-atm as the upper limit for NH₃ above the clouds on Titan.

We have investigated the photochemistry of NH₃ in the primordial Titan atmosphere and developed a model for the evolution of the atmosphere during geologic time. Our conclusion is that if NH₃ was available on Titan, a dense N₂ atmo-

SCIENCE, VOL. 201, 18 AUGUST 1978

sphere of 14 to 19 bars at the present time is plausible. We have also estimated the amount of H₂ that would be present as a result of production in NH₃ photochemistry and loss by Jeans escape in the case of limiting flux.

We propose the following scenario. After cooling and solidification of Titan's surface, and once outgassing began, the atmosphere may have contained such gases as CH₄ and NH₃. These gases were photolyzed, and NH₃ was converted to other nitrogen-bearing compounds while CH4 continued to build up in the atmosphere. Photolysis can convert some

CH₄ to other species. On the basis of possible recapture by Titan of escaping hydrogen atoms, Strobel (4) has estimated that up to 60 percent of CH4 may be recycled. Molecular hydrogen was also produced in the photolysis of these gases. Once the CH₄-H₂ surface pressure reached 0.1 bar, the greenhouse effect began to be important and the atmospheric temperature began to rise above the equilibrium value of 86°K. Calculations by Pollack (5) indicate that by the time the pressure of the CH₄-H₂ atmosphere reached 0.45 bar, the surface temperature would have been 150°K. Presspectroscopic ent-day observations place an upper limit on CH4 much lower than the amount required for a greenhouse effect leading to a 150°K temperature. These observations, however, apply to CH₄ in the visible atmosphere above the clouds. The existence of a much larger CH₄ abundance below the clouds is entirely possible.

The photochemistry of NH₃ has been discussed in detail in the context of Jupiter in a recent paper by Atreya et al. (6). The photochemical scheme is shown in Fig. 1 and the relevant rate constants are given in Table 1. Photolysis of NH₃ in the range 160 to 230 nm leads to the formation of H and the radical NH₂. A fraction of NH₃ is recycled by the reaction of NH₂ with H (reaction R2). Reaction of NH₂ with itself (R3) forms hydrazine, N_2H_4 . Assuming that N_2H_4 remains in the vapor phase, it undergoes photolysis in the same spectral range as NH₃ (R5) or reacts with H (R4). Both these processes produce the radical N₂H₃. Reactions of N_2H_3 with itself can lead to NH_3 (R8) or N_2H_4 and N_2 (R9). The recycling of NH_3 by the path R8, however, is insignificant compared to N_2 production by R9. The final products of this gas phase photochemistry are thus N_2 and H_2 .

During the early phases of the evolution of the atmosphere, the NH₃ volume mixing ratio would have been determined by its saturation vapor pressure. The vapor pressure at 86°K is 1×10^{-6} mbar, at 100°K is 2×10^{-5} mbar, and at 120°K is 3×10^{-3} mbar. In any event, photolysis of NH₃ proceeded from the beginning, the altitude at which it predominantly occurred rising as the atmospheric temperature increased with the development of the CH₄-H₂ greenhouse. The photochemical cycle leading to N₂ may have terminated during the early history of the atmosphere with the formation of N_2H_4 . For the range of N_2H_4 partial pressures prevailing during this period, N₂H₄ can condense at temperatures below 150°K. However, it is conceivable that the gas phase chemistry

0036-8075/78/0818-0611\$00.50/0 Copyright © 1978 AAAS

Table 1. Relevant chemical reactions and associated rate constants.

Reaction number	Reaction*	Rate constant [†]
R1	$\mathrm{NH}_3 + h\nu \rightarrow \mathrm{NH}_2(X) + \mathrm{H}$	J(NH ₃)
R2	$\mathrm{NH}_2(X) + \mathrm{H} \xrightarrow{+\mathrm{M}} \mathrm{NH}_3$	$k_2 = 6 \times 10^{-30} [M] / (1 + 3 \times 10^{-20} [M])$
R3	$NH_2(X) + NH_2(X) \xrightarrow{+M} N_2H_4$	$k_3 = 1 \times 10^{-10}$
R4	$N_2H_4 + H \rightarrow N_2H_3 + H_2$	$k_4 = 9.87 \times 10^{-12} \exp(-1198/T)$
R5	$N_2H_4 + h\nu \rightarrow N_2H_3 + H$	$J(N_2H_4)$
R6	$N_2H_3 + H \rightarrow 2NH_2$	$k_6 = 2.7 \times 10^{-12}$
R 7	$H + H + M \rightarrow H_2 + M$	$k_7 = 8 \times 10^{-33} (300/T)^{0.6}$
R 8	$N_2H_3 + N_2H_3 \rightarrow 2NH_3 + N_2$	$k_8 \ll k_9$
R9	$N_2H_3 + N_2H_3 \rightarrow N_2H_4 + N_2H_2$	
	$\rightarrow N_2H_4 + N_2 + H_2$	$k_9 = 6 \times 10^{-11}$

[†]The rate constants k are expressed in cubic centimeters per *In the reactions M is the background gas. The reactions of its the background gas. The rate constants are expressed in concentrative spectral for two-body reactions and centimeters to the sixth power per second for three-body reactions. The photodissociation rates $J(NH_3)$ and $J(N_2H_4)$ are in reciprocal seconds. References for the rate constants are cited in Atreya et al. (6).

might not have terminated with the production of N₂H₄ even when the atmospheric temperature was lower than 150°K. In the primitive atmosphere condensation nuclei may not have been present, and the lifetime of N₂H₄ against condensation may have been longer than its lifetime against photolysis or reaction with H. This may even have been the case if some nuclei were present. But in any case, once the atmosphere had accumulated more than 0.45 bar of CH₄ and H_2 , the temperature would have become high enough to allow N_2H_4 to remain in the vapor phase and the $NH_3 \rightarrow N_2$ chemistry would have proceeded. Of course, we cannot be sure that there is enough CH₄ in the atmosphere for this to have occurred, but neither can we rule it out and the assumption is at the very least plausible.

For reference we adopt Hunten's temperature profile and altitude scale (2). In Hunten's dry adiabatic model the temperature at the cloud top or surface is 125°K. If no other gas is present, the CH₄ abundance in the upper atmosphere is estimated to be about 2 km-atm (7), giving a pressure of about 20 mbar at the cloud top. We have solved one-dimensional steady-state coupled continuity and eddy transport equations for the relevant species, using a generalized Newton-Raphson method. The step size was 1 km, convergence criterion 5 percent, and spectral interval 10 Å. The system was treated as a two-point boundary value problem. The resultant globally averaged profiles of NH₃, NH₂, H, and N₂H₄ volume mixing ratios and the saturation vapor mixing ratio profile of N₂H₄ are shown in Fig. 2. At 125°K, the difference between the calculated N₂H₄ partial pressure and its saturation vapor pressure is almost five orders of magnitude. As the NH₃ photochemical cycle proceeds, more and more N2 is accumulated in the atmosphere. In approximately 2 percent of geologic time (100 million years) nearly 20 km-atm of N₂ would have been accumulated, raising the cloud top pressure to 350 mbar. With increased pressure more NH₃ would be recycled because of the pressure dependence of the rate of R2. Consequently, less N_2H_4 and therefore less N_2 would be produced. We take this aspect of the evolving atmosphere into account when we calculate the total amount of N2 accumulated over geologic time.

At the beginning of outgassing from the satellite, when its surface temperature was still at its equilibrium value, only a trace amount of NH₃ could be permitted in the vapor phase. Photolysis of NH₃ at that epoch could take place only near the surface, where its volume mixing ratio relative to 2 km-atm of CH₄ was 5×10^{-8} . Because of its short duration and low atmospheric temperatures, this phase contributed little, if any, of the present-day total N2 on Titan. As CH4 accumulated in the atmosphere after outgassing, the surface temperature increased to as much as 150°K. Consequently, the NH₃ vapor pressure increased and photolysis began to occur higher in the atmosphere. In less than 2 percent of geologic time 20 km-atm of N₂ would have accumulated and the cloud top pressure would have increased to 350 mbar. We estimate that 98 percent of the N₂ on Titan was accumulated after the cloud top pressure became high; that is, \geq 350 mbar. An accumulation of 20 to 30 km-atm of N₂ also implies a CH₄ abundance on the order of only 0.1 km-atm (8) or a cloud top CH₄ partial pressure of 1 mbar. Therefore the profiles of NH_2 , H, and N_2H_4 shown in Fig. 2 based on the assumption of a 20-mbar cloud top pressure apply to the atmosphere during an early phase of evolution. For NH₃, however, we show profiles for cloud top pressure of 1 mbar (no N₂, only 100 matm of CH₄), 20 mbar (no N₂, but 2 km-

NH₂, H, and N₂H₄. The solid curves show mixing ratios in an atmosphere with a cloud top pressure of 20 mbar (due to CH₄ alone) and an eddy diffusion coefficient $K = 10^5$ cm² sec⁻¹. The height scale is from Hunten (2); the corresponding atmospheric densities and temperatures (for a cloud top pressure of 20 mbar) are marked on the right ordinate. The scale for the N₂H₄ saturation mixing ratio is shown on the upper abscissa. Ammonia mixing ratios are also shown for the following cases: (i) $K = 10^5$ cm² sec⁻¹, cloud top pressure, 1 mbar (- ... -) and 350 mbar -); and (ii) $K = 10^7 \text{ cm}^2 \text{ sec}^{-1}$, cloud top pressure, 20 mbar (-----).

atm of CH₄), and 350 mbar (20 km-atm of N_2). With one exception these results are for an eddy diffusion coefficient $K = 10^5$ cm² sec⁻¹. In the high eddy diffusion case $(K = 10^7 \text{ cm}^2 \text{ sec}^{-1}) \text{ NH}_3$ remains mixed to greater altitudes and more photolysis occurs at higher altitudes than in the low case ($K = 10^5 \text{ cm}^2 \text{ sec}^{-1}$).

The calculations presented here indicate that a major fraction of the NH₃ outgassed is converted to N_2H_4 or N_2 . Both N_2H_4 and N_2 can be recycled to NH_3 only in the presence of an H_2 atmosphere and under conditions of extremely high temperatures and pressures where the activation energies of reactions of NH₂ (produced on thermal decomposition of N_2H_4) or N_2 with H_2 can be overcome. These gas phase reactions occur on Jupiter at H₂ pressures in excess of 3000 bars, a condition that is not likely to occur on Titan. Consequently, once photolyzed, NH₃ is expected to end up in the formation of N_2 . The photolysis rate for NH₃ on Titan is 1.2×10^{11} cm⁻² sec^{-1} . However, NH_2 is reconverted to NH_3 at a rate of 4.4 $\times 10^{10}$ cm⁻² sec⁻¹ if K is $10^7~cm^2~sec^{-1}$ and $6.4\times10^{10}~cm^{-2}$ \sec^{-1} if K is 10^5 cm² sec⁻¹. Since two NH₂ radicals are required to make each N_2H_4 molecule, this makes the N_2H_4 production rates 3.8×10^{10} and 2.8×10^{10} cm^{-2} sec⁻¹. In reaction R9, two N₂H₃ radicals are needed to produce one molecule of N₂, so the corresponding rates of N_2 production are 1.9×10^{10} and $1.4 \times$ 10^{10} cm⁻² sec⁻¹. The total N₂ production over geologic time would be 2.2×10^{27} cm⁻² for $K = 10^5$ cm² sec⁻¹ and 2.9 × 10^{27} cm⁻² for $K = 10^7$ cm² sec⁻¹. This implies a total accumulation of 825 or 1100 km-atm of N₂, corresponding to a pressure of 14 or 19 bars, depending on the two values of K.

In contrast with the mixing ratios of species when the cloud top pressure was only 20 mbar (Fig. 2), the mixing ratios in the present-day atmosphere with a surface N₂ pressure of 14 bars would be 4.5 \times 10^{-7} for NH_3, 3.9 \times 10^{-9} for N_2H_4, $1\times10^{\scriptscriptstyle-10}$ for H, and $1\times10^{\scriptscriptstyle-12}$ for NH_2 at 70 km, where the temperature is taken to be 100°K. The maximum mixing ratios would be 6.7×10^{-8} for N₂H₄ at 94 km, 1.8×10^{-9} for H at 105 km, and 2×10^{-11} for NH₂ at 103 km. Hunten (9, 10) has estimated that a pressure of 21 bars of N₂ would be required to explain the recently measured (11) surface temperature of 200°K on Titan. This value of surface pressure is within the range of values we obtain in our models, particularly those with $K = 10^7 \text{ cm}^2 \text{ sec}^{-1}$. We are aware of the discrepancy between the "surface" temperatures measured at wavelengths 18 AUGUST 1978

of 3 mm (11) and 37 mm (12). The latter gives a radio brightness temperature of $115^{\circ} \pm 40^{\circ}$ K, much smaller than the recently measured 200°K (11). Because of uncertainties in the radius of Titan, it is not apparent whether the lower temperature value applies to the surface or some level high up in the atmosphere. The consequences of possible lower surface temperature on our photochemical model are addressed further in the concluding paragraph.

In reaction R9 one molecule of H_2 is produced for every molecule of N₂. As we have seen, the present rate of N₂ production from NH₃ is 1.4×10^{10} or $1.9 \times$ 10^{10} cm⁻² sec⁻¹, depending on the value of K used. Hence, these rates represent lower limits to the rate of escape of H_2 from Titan, assuming limiting flux and no net flux of H₂ into the surface. These are lower limits to the escape flux because additional H_2 can be produced by threebody recombination of H produced in the NH₃ and CH₄ photochemical chain. However, formation of H₂ by reaction R7 in the NH₃ chain is very slow compared to that by R9. In this report we will not discuss CH₄ photochemistry. The H₂ produced in the lower atmosphere will flow upward through the homopause to the base of the exosphere and escape from the atmosphere. Based on the arguments of limiting flux (1, 13), we calculate that H_2 produced by NH_3 alone could amount to between 6 and 8 m-atm above the clouds, far less than the 5 kmatm inferred by Trafton (14). One should note, however, that Trafton's results represent an upper limit to the H₂ abundance on Titan. On the other hand, recent observations of Münch et al. (15) place 1 km-atm as an upper limit on the H₂ abundance on Titan. The total amount of H₂ arising from NH₃ in the homosphere is 3 and 5.4 km-atm for the two values of K in our models (16). Our calculations also indicate that the density of H₂ at the exobase required to allow H₂ originating from NH₃ to flow away in Jeans escape is 1.4 to 1.9 \times 10⁷ cm⁻³. The exobase density and associated H₂ flux are well within the realm of values required to maintain a Titan torus of approximately 10³ molecules per cubic centimeter.

The calculations presented here indicate that it is plausible for Titan to have accumulated a thick atmosphere of nitrogen over geologic time, provided the surface temperature during the early phases of evolution was in excess of 150°K. A temperature of 150°K could have been provided by a greenhouse effect, due to either CH₄-H₂ or NH₃. On

the other hand, if the surface temperature did not exceed 150°K, the total surface pressure of the resultant N_2 atmosphere would be much smaller than we have calculated, because of inefficient photolysis of N₂H₄. We recognize the possible importance of NH₃ as a contributor to the greenhouse effect (17) in addition to CH₄-H₂. Our calculations indicate that for an equilibrium temperature of 86°K the temperature increase due to NH₃ is less than 1°K, but for 120°K it could be about 10°K. Of course this increased surface temperature due to NH₃ would only aid in the production of a nitrogen atmosphere on Titan.

> SUSHIL K. ATREYA THOMAS M. DONAHUE

WILLIAM R. KUHN

Department of Atmospheric and Oceanic Science, Space Physics Research Laboratory, University of Michigan, Ann Arbor 48109

References and Notes

- D. M. Hunten, J. Atmos. Sci. 30, 726 (1973).
 _____, in Planetary Satellites, J. A. Burns, Ed. (Univ. of Arizona Press, Tucson, 1977), pp. 420-437.
- T. C. Owen, personal communication; see also *Icarus* **32**, 314 (1977). D. F. Strobel, *Icarus* **21**, 466 (1974). 3.
- J. B. Pollack, *ibid.* **19**, 43 (1973).
 S. K. Atreya, T. M. Donahue, W. R. Kuhn, *ibid.* **31**, 348 (1977).
- B. L. Lutz, T. C. Owen, R. D. Cess, *ibid.* 203, 2010.
- 9. D. M. Hunten, personal communication.
- 10
- 11.
- 1 (1977).
- F. H. Briggs, Icarus 22, 48 (1974). C. Sagan, *ibid.* 18, 649 (1973). L. M. Trafton, Astrophys. J. 175, 285 (1972); Icarus 24, 443 (1975). 14.
- 15. G. Münch, J. T. Trauger, F. L. Roesler, Astrophys. J. 216, 963 (1977).
 16. The effusion velocity at the exobase at 120°K is 1 × 10³ cm sec⁻¹, while the diffusion velocity at the homopause is only 4 × 10⁻² or 4 cm sec⁻¹, depending on whether K is 10⁶ or 10⁷ cm² sec⁻¹. Hence the condition for limiting flux (1) is easily met. Therefore, the upward flux of H_2 will be given by b/H, where the molecular diffusion co-efficient of H_2 in N_2 is given by $b/[N_2]$, H is the N_2 scale height at the homopause, and f is the N₂ scale neight at the homopause, and *f* is the total hydrogen volume mixing ratio attributable to NH₃ in the lower atmosphere. At the homopause temperature of 120°K, *b* is 1.0×10^{19} cm⁻¹ sec⁻¹, *H* is 26 km, and *f* is 3.6 × 10⁻³ or cm⁻¹ sec⁻¹, H is 26 km, and f is 3.0×10^{-1} or 5×10^{-3} for the two values of K considered. These values of f imply a total H_2 abundance in the homosphere of 3 or 5.4 km-atm. Since the maximum mixing ratio of NHs in the photolysis regime is only 4.5×10^{-7} in the presence of 20 km-atm of N₂, the hydrogen must be mainly in the form of H₂. The mixing ratio of CH₄ above the clouds is 5×10^{-3} if there is 20 km-atm of N₂ the clouds is 3×10^{-9} if there is 20 km-atm of N₂ above the clouds. Hunten (2) infers from Stro-bel's (4) treatment of CH₄ photochemistry that there could be an H₂ flux of 9×10^9 cm⁻² sec⁻¹ in addition to the value from NH₃ discussed in the text. This exercise the strength of the sector between the strength of the sector between the text. This contribution would have to be
- 17.
- the text. This contribution would have to be added to the overall hydrogen budget. C. Sagan, *Nature (London)* 269, 224 (1977); W. R. Kuhn and S. K. Atreya, *Icarus*, in press. We have benefited from discussion with T. C. Owen and D. M. Hunten. We thank D. Kraemer for numerical assistance. Supported by the At-mospheric Research Section, National Science Foundation, and by NASA grants NSG-7404 and NSG-7308. 18. and NSG-7308

8 March 1978; revised 24 May 1978