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Local Moments and Localized Sts 

P. W. And 

I was cited for work both in the field of 
magnetism and in that of disordered sys- 
tems, and I would like to describe here 
one development in each field which was 
specifically mentioned in that citation. 
The two theories I will discuss differed 
sharply in some ways. The theory of lo- 
cal moments in metals was, in a sense, 
easy: it was the condensation into a 
simple mathematical model of ideas 
which were very much in the air at the 
time, and it had rapid and permanent ac- 
ceptance because of its timeliness and its 
relative simplicity. What mathematical 
difficulty it contained has been almost 
fully cleared up within the past few 
years. 

Localization was a different matter: 
very few believed it at the time, and even 
fewer saw its importance; among those 
who failed to fully understand it at first 
was certainly its author. It has yet to re- 
ceive adequate mathematical treatment, 
and one has to resort to the indignity of 
numerical simulations to settle even the 
simplest questions about it. Only now, 
and primarily through Sir Nevill Mott's 
efforts, is it beginning to gain general ac- 
ceptance. 

Yet these two finally successful brain- 
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tions of two distant atoms from dn + d'I 
to dn - 1 + dn + 1. This energy U is essen- 

tially the Coulomb repulsive energy be- 
tween two electrons on the same site, 
and can be quite large (see Fig. 1). To 
describe such a situation, I set up a mod- 
el Hamiltonian (now called the Hubbard 

t ps Hamiltonian). 

children also have much in common: 
first, they flew in the face of the over- 
whelming ascendancy at the time of the 
band theory of solids, in emphasizing lo- 
cality: how a magnetic moment, or an ei- 
genstate, could be permanently pinned 
down in a given region. It is this fascina- 
tion with the local and with the failures, 
not successes, of band theory, which the 
three of us here seem to have in com- 
mon. Second, the two ideas were each 
born in response to a clear experimental 
signal which contradicted the assump- 
tions of the time; third, they intertwine 
my work with that of my two great col- 
leagues with whom I have been jointly 
honored; and fourth, both subjects are 
still extremely active in 1977. 

The Anderson Model: 

Local Moments in Metals 

To see the source of the essential ele- 
ments of the model I set up for local mo- 
ments in metals, it will help to present 
the historical framework. Just 2 years 
before, I had written a paper on super- 
exchange (1) discussing the source and 
the interactions of the moments in in- 
sulating magnetic crystals such as MnO, 
CuS04 * 5H20, and so on. I had de- 
scribed these substances as what we 
should now call Mott insulators on the 
insulating side of the Mott transition, 
which unfortunately Sir Nevill says he 
will not describe. Briefly, following a 
suggestion of Peierls, he developed the 
idea that these magnetic insulating salts 
were so because to create an ionized 
electronic excitation would require an 
additional excitation energy U, the ener- 
gy necessary to change the configura- 

H = b,i ci, c, + E U nitni 
i,J, ,a i 

(1) 

Here bij represents the amplitude for the 
electron to "hop" from site to site-such 
hops as shown in Fig. lb-and U the re- 
pulsion energy between two opposite- 
spin electrons on the same site (parallel, 
of course, being excluded according to 
the Pauli principle). With Eq. 1-appro- 
priately generalized-it was possible to 
understand the predominantly anti- 
ferromagnetic interactions of the spins in 
these Mott insulators, which include the 
ancient lodestone or magnetite, as well 
as the technically important garnets and 
ferrites. These interactions are caused 
by the virtual hopping of electrons from 
a site to its neighbor and returning, 
which is only possible for antiferro- 
magnetism, where the requisite orbital 
is empty. From simple perturbation 
theory, using this idea 

-2b2 
Jij = 

U (2) 

where bj represents the tendency of 
electrons to hop from site to site and 
form a band. (The provenance of Eq. 2 is 
made obvious in Fig. 2.) In fact, I 
showed later in detail (2) how to explain 
the known empirical rules describing 
such interactions, and how to estimate 
parameters b and U from empirical data. 

The implications for magnetism in 
metals-as opposed to insulators-of 
this on-site Coulomb interaction U were 
first suggested by Van Vleck and elabo- 
rated in Hurwitz' thesis (3) during the 
war, and later in a seminal paper, which I 
heard in 1951, published in 1953 (4). Al- 
so, very influential for me was a small 
conference on magnetism in metals con- 
vened at Brasenose College, Oxford, 
September 1959, by the Oxford-Harwell 
group, where I presented some very 
qualitative ideas on how magnetism in 
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the iron group might come about. More 
important was my first exposure to Frie- 
del's and Blandin's ideas on resonant or 
virtual states (5, 6) at that conference. 
The essence of Friedel's ideas was (i) 
that impurities in metals were often best 
described not by atomic orbitals but by 
scattering phase shifts for the band elec- 
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trons, which would in many cases be of 
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scatterers on superconductivity (7). For 
sonant form, and (ii) that spins in the many rare earth atoms, the decrease in 
Lse of magnetic impurities might be de- Tc due to adding magnetic impurities is 
ribed by spin-dependent scattering clear and very steep (see Fig. 3a), and 
iase shifts. even steeper for most transition metal 
Matthias and Suhl, at Bell, were at impurities. For instance, Fe at the 10-5 
at time much involved in experiments level completely wipes out super- 
d theory on the effect of magnetic conductivity in Mo. But in many other 

cases, such as Fe in Ti, a nominally mag- 
netic atom had no effect, or raised Tc (as 

?*- -.. . C -. *_in Fig. 3b). A systematic study of the oc- 
currence of moments was carried out by 
Clogston et al. (8). As yet, no real 

.-... * ? --- thought [except see (6)] had been given 
to what a magnetic moment in a metal 
meant: the extensive investigations of 

- ~- - - Mn in Cu by Owen et al. (9) and Crane 
and Zimmermann (10), for instance, and 

?. t . ~. ,, the Yosida calculation (11) essentially 
- extra repulsive\ postulated a local atomic spin given by 

energy U God and called S, connected to the free 
. .? .~ .~ ~electrons by an empirical exchange in- 
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where 

Fig. 1 (above). Mott-Peierls mech- 
anism for magnetic state. State 
with free pair has extra repulsive 
energy U of two electrons on 
same site. Fig. 2 (left). Virtual 
hopping as the original of super- 
exchange. 

S = E Cka+ UrO' Ck'a' 
kk' 

is the local spin density of free electrons 
at the impurity. 

The Anderson model (12) is the sim- 
plest one which provides an electronic 
mechanism for the existence of such a 
moment. We insert the vital on-site ex- 
change term U, and we characterize the 
impurity atom by an additional orbital 
kd, with occupancy nda and creation op- 
erator Cda, over and above the free elec- 
tron states near the Fermi surface of the 
metal [the obvious overcompleteness 
problem is no real difficulty, as I showed 
later (13)]. The physics should be clear 
by reference to Fig. 4. The Hamiltonian 
is 

H = Ek nk,a + 
ko 

Und nd + Ed(nd + nd4) + 

Vdk(ca+cko. + CC) 
kor 

(4) 

PERCENT 

Fig. 3. Effect of magnetic impurities on the super- 
conducting transition temperature (Tc) of a super- 
conductor: (a) decrease in T,; (b) increase in T,. 
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where in addition to free electrons and 
the magnetic term U, we have a d-to-k 
tunneling term Vdk representing tunnel- 
ing through the centrifugal barrier which 
converts the local orbital 4d into one of 
Friedel's resonances. The resonance 
would have a width 

A = vT < Vdk > p(Ed) (5) 
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and in the absence of U would be cen- 
tered at Ed, the energy of the d resonance 
(if the density of states p is sufficiently 
constant-see Fig. 4 again). 

A simple Hartree-Fock solution of this 
Hamiltonian showed that if Ed is some- 
what below EF, and if A/U < Tr, the res- 
onance will split as shown in Fig. 5 (from 
the original paper). One has two reso- 
nances, one for each sign of spin: a most- 
ly occupied one below the Fermi level 
and a mostly empty one above. This 
leads to a pair of equivalent magnetically 
polarized solutions, one for each direc- 
tion of spin. In these solutions, the local 
state 'kd is mixed into scattered free-elec- 
tron states: there are no local bound 
electronic states, but there is a local mo- 
ment. Again in Hartree-Fock theory, the 
magnetic region is shown in Fig. 6. The 
parameters could be estimated from 
chemical data or from first principles, 
and it was very reasonable that Mn or Fe 
in polyelectronic metals should be non- 
magnetic as was observed, but magnetic 
in, for instance, Cu. 

This seems and is a delightfully simple 
explanation of a simple effect. The math- 
ematics is shamelessly elaborated (or 
simplified) from nuclear physics (Frie- 
del's improvements on Wigner's theory 
of resonances) and similar things occur 
in nuclear physics called analog reso- 
nances. Nonetheless, it has led to an ex- 
traordinary and still active ramification 
of interesting physics. 

Before discussing some of these 
branchings, let me say a bit about the 
model's simplicity, which is to an extent 
more apparent than real. The art of mod- 
el-building is the exclusion of real but ir- 
relevant parts of the problem, and entails 
hazards for the builder and the reader. 
The builder may leave out something 
genuinely relevant; the reader, armed 
with too sophisticated an experimental 
probe or too accurate a computation, 
may take literally a schematized model 
whose main aim is to be a demonstration 
of possibility. 

In this case, I have left out: (i) The 
crystal structure and in fact the atomic 
nature of the background metal, which is 
mostly irrelevant indeed. (ii) The degen- 
eracy of the d level, which leads to 
some important physics explored in an 
appendix of the paper and later and 
much better by Caroli and Blandin (14). 
In the appendix I showed that if the 
resonance was sufficiently broad com- 
pared to other internal interactions of the 
electrons in the d orbitals, the different d 
orbitals would be equally occupied, as is 
usually observed for transition metal im- 
purities; in the opposite case the orbital 
degrees of freedom will be "un- 
quenched," as is almost always the case 
for rare earth atoms. (iii) All correlation 
effects except U. This relies on the basic 
"Fermi liquid" idea that metallic elec- 
trons behave as if free, but detaches all 
parameters from their values calculated 

naively: they are renormalized, not 
"bare" parameters. This is the biggest 
trap for the unwary, and relies heavily on 
certain fundamental ideas of Friedel on 
scattering phase shifts and of Landau on 
Fermi liquids. I have also left out a num- 
ber of real possibilities, some of which 
we will soon explore. 

One of my strongest stylistic prej- 
udices in science is that many of the facts 
nature confronts us with are so implau- 
sible, given the simplicities of non- 
relativistic quantum mechanics and sta- 
tistical mechanics, that the mere demon- 
stration of a reasonable mechanism 
leaves no doubt of the correct ex- 
planation. This is so especially if it also 
correctly predicts unexpected facts such 
as the correlation of the existence of mo- 
ment with low density of states, the 
quenching of orbital moment for all d- 
level impurities as just described, and 
the reversed free-electron exchange po- 
larization which we shall soon discuss. 
Very often such a simplified model 
throws more light on the real workings of 
nature than any number of "ab initio" 
calculations of individual situations, 
which, even where correct, often contain 
so much detail as to conceal rather than 
reveal reality. It can be a disadvantage 
rather than an advantage to be able to 
compute or to measure too accurately, 
since often what one measures or com- 
putes is irrelevant in terms of mecha- 
nism. After all, the perfect computation 

v(r) 

r 

E(k) 

k 

Fig. 4 (left). The d resonance due to tunneling through the centrifugal 
barrier. Fig. 5 (right). Spin-split energy levels in the magnetic 
case. 
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simply reproduces nature, does not ex- 
plain her. 

To return to the question of further de- 

velopments from the model: I should like 
to have had space to lead you along sev- 
eral of them. Unfortunately, I shall not, 
and instead, I shall show you a table of 
the main lines (Table 1) and then follow 
one far enough to show you an equation 
and a picture from the recent literature. 

The one of these lines I would like to 
take time to follow out a bit is the "mod- 
el" aspect, part 1 of Table 1. This started 
as a very physical question: what is the 
sign and magnitude of the spin-free elec- 
tron interaction? Already in 1959, before 
the model appeared, I made at the Ox- 
ford Discussion a notorious bet of ?1 
with (now Sir) Walter Marshall that the 
free-electron polarization caused by the 
spins in metals would be negative, for 
much the same reason as in super- 
exchange: the occupied spin state below 
the Fermi level is repulsive, that above is 
attractive because it can be occupied by 
the free electrons of the same spin. Clog- 
ston and I published this for the Ander- 
son model (15). This was formalized by 
Wolff, and published later with Schrief- 
fer (16), into a perturbative equivalence 
of Kondo and Anderson models with the 
exchange integral J of Eq. 3 being 

J -T 
E 

Ed +U (6) 

where 

A = rr<lVdk 2>p(EF) 

Soon, however, it came to be realized 
that neither the Kondo nor the Anderson 
model behaved reasonably at low tem- 
peratures (17-19), but exhibited nasty di- 
vergences which seemed to signal dis- 
appearance of the local moment. The 
best physical description of what hap- 
pens (for a more extensive review for 
nonspecialists perhaps my series of pa- 
pers in Comments on Solid State Physics 
will suffice) is that at high temperatures 

Fig. 6. Magnetic region of parameter space in 
the Anderson model. 

or on high-energy (short-time) scales, the 
Hartree-Fock theory given above is cor- 
rect, and there is a free spin. But as the 
energy scale is lowered, the effective 
antiferromagnetic coupling between this 
spin and the free-electron gas "boot- 
straps" itself up to a very large value, 
eventually becoming strong enough to 
bind an antiparallel electron to it and be- 
come nonmagnetic. This is a very pre- 
cise analog of the process of continuous 
confinement of the color degrees of free- 
dom of modern quark theories (20) and is 
a delightful example of the continuing 
flow of ideas and techniques back and 
forth between many-body physics and 

quantum field theory. 
In the past few years extensive investi- 

gations via renormalization group theory 
[which, in a nearly modern form, was 
first applied to this problem (21)] have 

Table 1. Ramifications of the Anderson model (AM). 

1. AM as an exact field-theoretical model-see text: 
(i) AM = Kondo: Anderson, Clogston, Wolff, Schrieffer. 
(ii) Fundamental difficulties of both: Alexander, Schrieffer, Kondo, Suhl, Nagaoka, Abriko- 

sov. 
(iii) Solution of Kondo: Anderson, Yuval, Hamann, Yosida, Wilson, Nozieres, and so on. 
(iv) Solution of AM: Hamann, Wilson, Krishna-Murthy, Wilkins, Haldane, Yoshida, and so 

on. 
2. "Microcosmic" view of magnetism in metals; interacting AM's and rules for alloy exchange 

interactions [Alexander and Anderson (43), Moriya (44)]. 
3. Applications to other systems: 

(i) Adatoms and molecules on surfaces [Grimley (45), Newns (46)]. 
(ii) Magnetic impurities in semiconductors [Haldane and Anderson (47)]. 
(iii) With screening + phonons, -U: mixed valence, surface centers, and so on [Haldane 

(24)]. The sky seems to be the limit. 
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led to the essential solution of this "Kon- 
do problem." A very succinct way of de- 
scribing that solution is the computation 
of the scaling of the susceptibility as a 
function of temperature by Wilson (22) 
(Fig. 7). For comparison, and to show 
the remarkable precision of the Schrief- 
fer-Wolff transformation, we give as the 
last figure of this subject Krishna-Mur- 
thy et al.'s corresponding calculation 
(23) for the Anderson model (Fig. 8) and 
one equation: Haldane's precise 
"equivalencing" of the parameters of 
the two models, from his thesis (24) 

TK_ 1 2AU )"2 e Ed(Ed+ U) 

(7) 

which may be used to find the properties 
of one model from the other, for instance 

0.103 
X(T ---> ) = 

TK 

I am indebted to a London Times ar- 
ticle about Idi Amin for learning that in 
Swahili "Kondoism" means "robbery 
with violence." This is not a bad descrip- 
tion of this mathematical wilderness of 
models; H. Suhl has been heard to say 
that no Hamiltonian so incredibly simple 
has ever previously done such violence 
to the literature and to national science 
budgets. 

Origins of Localization Theory 

In early 1956, a new theoretical de- 
partment was organized at Bell Labora- 
tories, primarily by P. A. Wolff, C. Her- 
ring, and myself. Our charter was unusu- 
al in an industrial laboratory at the time: 
we were to operate in an academic 
mode, with postdoctoral fellows, infor- 
mal and democratic leadership, and an 
active visitor program, and that first 
summer we were fortunate in having a 
large group of visitors of whom two of 
those germane to this story were David 
Pines and Elihu Abrahams (25). 

The three of us took as our subject 
magnetic relaxation effects in the beau- 
tiful series of electron paramagnetic res- 
onance experiments on donors in Si be- 
gun by Bob Fletcher and then being car- 
ried on by George Feher. Feher was 
studying (primarily) paramagnetic reso- 
nance at liquid He temperatures of the 
system of donor impurities (P, As, and 
so on) in very pure Si, in the concentra- 
tion range 1015 to 1018 impurities per cu- 
bic centimeter, encompassing the point 
of "impurity band" formation around 
6 x1017 cm-3. At such temperatures 
most of the donors were neutral (except 
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Fig. 7 (left). Susceptibility of the Kondo model as calculated by Wilson (22). Fig. 8 (right). Susceptibility of the Anderson model, showing 
equivalence to the Kondo model. [From Krishna-Murthy et al. (23)] 

those emptied by compensating acceptor 
impurities such as B, Al, or Ga), having 
four valences occupied by bonds, leav- 
ing a hydrogenic orbital for the last elec- 
tron, which, because of dielectric 
screening and effective mass, has an ef- 
fective Bohr radius of order 20 ang- 
stroms (Fig. 9). The free spin of this ex- 
tra donor orbital has a hyperfine inter- 
action with the donor nucleus (31p or As, 
for instance) leading to the clean hyper- 
fine structure (HFS) (26) shown in Fig. 
10. In addition, isotopic substitution 
proved that most of the residual breadth 
of the lines is also caused by HFS inter- 
actions, of the very extended electronic 
orbital with the random atmosphere of 
-5 percent of 29Si nuclei in natural Si, 
and for reasonably low donor densities 
of 1016 cm-3 the actual spin-spin and 

spin-lattice relaxation times were many 
seconds. That is, the lines were in- 
homogeneously broadened, so that many 
very detailed experimental techniques 
were available. Feher et al. (27) had al- 
ready probed what we would now call 
the Mott-Anderson transition in these 
materials (Fig. 10a). As the concentra- 
tion was raised, first lines with fractional 
HFS appeared, signifying clusters of 2, 
3, 4, or more spins in which the exchange 
integrals between donors overweighed 
the hyperfine splitting and the electron 
spins saw fractionally each of the donor 
nuclei in the cluster. (A good example is 
shown in Fig. 10b.) Finally, at -6 x 
1017 cm-3, came a sudden transition to a 
homogeneously broadened free-electron 
line: the electrons went into an impurity 
band at that point. 

Pines et al. (28) had developed a theo- 
ry of spin-lattice relaxation for donors, 
and it was our naive expectation that we 
would soon learn how to apply this to 
Feher's results. In fact, no theoretical 
discussion of the relaxation phenomena 
observed by Feher was ever forthcom- 
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ing, only a description of the experi- 
ments (29). What the three of us soon re- 
alized was that we were confronted with 
a most complex situation, little of which 
we understood. In particular, we could 
not understand at all the mere fact of the 
extremely sharp and well-defined "spin 
packets" evinced by such experiments 
as "hole digging" and later the beautiful 
ENDOR effect (29, 30). [In the ENDOR 
experiment Feher would select a spin 
packet by saturating the line at a specific 
frequency (digging a hole; Fig. 1 la) and 
monitor the nuclear magnetic resonance 
frequencies of 29Si nuclei in contact with 
packet spins by exciting with the appro- 
priate radio frequency and watching the 
desaturation of the packet (Fig. lb). In 
Fig. 11, the many seconds recovery time 
after passing the ENDOR line is actually 
an underestimate of the packet T2 be- 
cause the system is driven.] Thus every 
individual P electron had its own fre- 
quency and kept it for seconds or min- 
utes at a time. 

We assumed from the start the basic 
ideas of Mott with regard to actual elec- 

Fig. 9. Donor wave 
functions in 28Si and 
29Si nuclei : sche- 
matic. 

tron motion: that since there were few 
compensating acceptors, Coulomb re- 
pulsion kept most of the donors singly 
occupied, leaving us with the para- 
magnetic spin system we observed. 
Kohn seems to have suggested that even 
the empty donors would be pinned down 
by staying close to their compensating 
negatively charged acceptors because of 
Coulomb attraction (see Fig. 12). Thus 
there was little actual electron motion, 
and we noticed only some speeding up of 
the relaxation times as we approached 
what now would be called the Mott-An- 
derson transition. Stretching our gullibil- 
ity a bit, we could believe that nothing 
spectacular was necessarily required to 
prevent mobility of the actual charged 
electron excitations. [It was, however, at 
this time that I suggested to Geballe the 
study of dielectric relaxation in these 
materials to probe this motion, which led 
to the discovery of the now well-known 
Pollak-Geballe Co-8 conductivity (31). I 
felt that the absence of conduction in the 
impurity band was also a serious ques- 
tion, in this as in many other systems.] 

429 Si 
*~ ~~ ~~ ~ ~ C.. C C 

* * C ' i =[ 

C~~~~~~~~~~~~~~~~~~~~~~? C?' C?'' ? 

C ~ C C 

m 

a3 
"I 

H 
in 

I i I I 

ooooooooo 
0 

0 

*oll 

* ldli~o 



No arguments using Coulomb inter- 
action saved us from a second dilemma: 
the absence of spin diffusion. Bloember- 
gen (32), in 1949, had proposed the idea 
of spin diffusion in nuclear spin systems, 
which has since had much experimental 
verification. His idea was that the dipolar 
interactions caused mutual precessions 

which, in the high-temperature para- 
magnetic state of a spin system, could by 
diffusion equilibrate the spin temper- 
ature in space, thereby giving a means, 
for example, for nuclear spins to relax by 
diffusing to the neighborhood of an elec- 
tronic spin impurity. To calculate the 
process he used a simple estimate from 

the golden rule plus random walk theory. 
Portis (33), in 1953, introduced the 

idea of random inhomogeneous broad- 
ening, where complete equilibration 
within a spectral line is impeded, and in- 
stead one speaks of packets of spins hav- 
ing a definite resonance frequency within 
the line (Fig. 13). (Such packets are spa- 
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Fig. 11. (a) Hole-digging and ENDOR spectrum. While saturating a specific 
frequency (a) a radio-frequency signal of variable frequency is applied (b). 
Note the slow refilling of the hole (exponential recoveries) in (b): the sweep 
time is several minutes. This is the 29Si spin-lattice relaxation, enhanced by 
the radio frequency applied. 
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Fig. 12 (left). Hypothetical binding of charged donors to accep- 
tors. Fig. 13 (right). Spin packets and spectral diffusion. 

tially random, of course; in macroscopi- 
cally inhomogeneous systems the same 
phenomena had been seen much earlier.) 
Portis estimated that if the interaction of 
neighborhing spins was Jij, the lifetime of 
a spin packet (34) should be of order 

hl/r - rrJijave W (8) 

W being the width of the line and Z an 
effective number of neighbors: this is ap- 
parently obvious by the golden rule. But 
when Abrahams estimated Jij for our 
system, he found that according to Eq. 8, 
T should have varied from 0.1 to 10-6 sec- 
ond, whereas Feher's spin packets 
stayed saturated for 10 to 100 seconds in 
a typical ENDOR experiment. His esti- 
mates were checked by the cluster phe- 
nomenon of Fig. 10. 

I find in my notes a reference on 20 
June 1956 to a discussion with Pines 

a 

o 

0 

Ek 

V k(Rik) Ej 

\ V(Rj) 

Ej 

0 

where I suggested an "all or nothing" 
theorem to explain this. Later, on 31 Oc- 
tober 1956, comes an optimistically 
claimed "proof' of "Anderson's theo- 
rem," much like an unsophisticated ver- 
sion of my final paper, which even so is 
hardly a proof-one does not yet really 
exist. I also seem to have spoken to an 
uninterested audience at the Seattle In- 
ternational Theoretical Physics Sym- 
posium. But the actual work was not 
completed until shortly before I talked 
about it to much the same group of resi- 
dents and visitors on 10 and 17 July 1957. 
By that time, I had clearly been a nui- 
sance to everyone with "my" theorem: 
Peter Wolff had given me a short course 
in perturbation theory, Conyers Herring 
had found useful preprints from Broad- 
bent and Hammersley on the new sub- 
ject of percolation theory, Larry Walker 
had made a suggestion and Gregory 

a Vkk, Vk'k 
x x 

, = 

I -k k' k 
' 

Wannier posed a vital question, and so 
on. But my recollection is that, on the 
whole, the attitude was one of humoring 
me. 

Let me now give you the basics of the 
argument I then presented (35), but in 
much more modern terminology (the 
mathematics is the same, essentially). I 
do not think this is the only or final way 
to do it; a discussion which is more use- 
ful in many ways, for instance, can be 
based on Mott's idea of minimum metal- 
lic conductivity as used by Thouless and 
co-workers and as he will touch upon; 
but I think this way brings out the essen- 
tial nature of this surprising nonergodic 
behavior most clearly. I apologize for 
this brief excursion into mathematics, 
but please be assured that I include the 
least amount possible. 

The first problem was to create a mod- 
el which contained only essentials. This 

Vk k' Vk'k" Vk"k 
X X X 

k' k" " 

0 

b 

Vi ji Ej 

ci vi 
+ 

Fig. 14 (left). Model for diffusion in a random lattice: (a) sites and hopping integrals; (b) proba- 
bility distribution of Ei. Fig. 15 (right). (a) Self-energy diagrams in conventional propagator 
theory. (b) Self-energy diagrams in locator theory. 
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was simple enough: a linearized, random 
"tight-binding" model of noninteracting 
particles 

H = L Ein, + > Vij ci+ cj 
i ij 

(9) 

in which the hopping integrals Vij were 
taken to be nonrandom functions of r 
(the sites i can sit on a lattice if we like), 
but Ei was chosen from a random proba- 
bility distribution of width W (Fig. 14). 
The objects ci could be harmonic oscilla- 
tor (phonon) coordinates, electron oper- 
ators, or spinors for which Vij Jj, and 
we neglect the JijSizSj interactions of the 
spin flips. The essential thing is that Eq. 
9 leads to the linear equation of motion 

ihi+ = Eici+ + E Vij c (10) 

domly fluctuating Ei's. The Ek's are a 
continuum in the limit of a large system 
and we take advantage of this to rear- 
range perturbation theory and get 

Gkk = (12) E - E,- E(k,E) 

where X, the self-energy, is itself a per- 
turbation series (Fig. 15a) 

E= E (V h-k')2 + 
k' k E - Ek' 

Vk-,Vk-,k' Vktik 

k",k' k k (E - Ek,) (E - Ek,) ( 

(13) 

which, since Ek is a continuum, has a fi- 
nite imaginary part as E approaches the 
real axis 

gen atom. What I showed is that one may 
have a continuum in energy but not in 
space. This is immediately made plau- 
sible just by doing perturbation theory in 
the opposite order. 

In this case one takes Ei as the big 
term, and the starting eigenfunctions and 
eigenenergies are just 

0i? = fi, Ei? = Ei (18) 

and Vij is the perturbation. In this case 
(which Larry Walker suggested I call 
'cisport") we use a locator instead of a 
propagator series, for the locator Gii not 
the propagator Gkk: 

Gii(E + is) = 

E + is - Ei- ,(E + is) 
(19) 

If W is zero and all Ei the same (say ze- 
ro), Eq. 10 describes a band of Bloch 
states of width about Z Vij. For 
W << Vij = V, the theories of transport 
recently developed by Van Hove and 
Luttinger (36) clearly would describe re- 
sistive impurity scattering of free waves 
(say electrons, for simplicity). If, on the 
other hand, W >> V, that would de- 
scribe our system of local hyperfine 
fields large compared to Ji, or of random 
Coulomb and strain energies large com- 
pared to the hopping integrals for the 
electrons from donor to donor. 

What is clearly called for is to use W as 
a perturbation in the one case, and Vij in 
the other; but what is not so obvious is 
that the behavior of perturbation theory 
is absolutely different in the two cases. 
For definiteness, let us talk in terms of 
the resolvent or Greenian operator 
which describes all the exact wave 
functions 4, and their energies E, 

G= 
E-H 

that is, 

G(r,r') = 0 ~(r ) E (r') (11) 

where the f^a and E, are the exact eigen- 
functions and eigenenergies of the Ham- 
iltonian, Eq. 9. In the conventional, 
transport case, we start our perturbation 
theory with plane-wavelike states 

cb= v- eik, i 
V N i 

with energies 

Ek = E Vij cosk * (R -R R) 
(i - j) 

which we assume are only weakly per- 
turbed by the scattering caused by ran- 
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lim Im E = 
Im E - +?0 

?+ 7rJVkk,2 8(ET, - E) + . .. (14) 

Note that Vkk' in this case comes from 
the width W, not Vj. 

This equation means that Ek has a fi- 
nite width in energy, and Im G, the den- 
sity of states, is a finite, continuous func- 
tion of E (Fig. 16a). 

lim Gk(E + is) 
s --?0 

1 

E - E - Rel T iA(E) 

G has a genuine cut on the real axis, and 
there is a continuum of energy states at 
every site, of every energy in the band: 
the states are what we now call extend- 
ed. That is, the definition of G (Eq. 11) 
basically tells us 

Im G(i,i;E) = 

7rr S ka(ri) 2a(E- E,) (16) 
ax 

Transforming Eq. 15 to find Gii, we find 
that the lO,(ri)2 are each infinitesimal of 
order (N)--1, forming in the limit 
N --> o a true continuum of states of 
every energy at site i. Of course, there 
are sum rules stating that every state is 
somewhere and that no states get lost 

E a(i)l2 = a |0,(i) 2 = 1 (17) 

and these are satisfied by f,(i)- 
(/N)-1, where N is the total number 
both of a's and i's. 

My contribution was just to show that 
this is not the only possible case, other 
than an empty band of energies or a set 
of discrete states as one may have near a 
single attractive potential like a hydro- 

where now the self-energy E is a superfi- 
cially similar series to Eq. 13 (Fig. 15b) 

(Vj) + 
i=i iE-Ej 

V VV3kVki -+ . .. (20) 
j,k i (E - Ej)(E - 

E) 

If at this point we make one tiny mis- 
take, we immediately arrive back at Por- 
tis' answer (Eq. 8): namely if we average 
in any way, we get 

Ave lim [Im Z(E + is)]} (- 2) s -+ W 

(21) 

But there is a very important fundamen- 
tal truth about random systems we must 
always keep in mind: no real atom is an 
average atom, nor is an experiment ever 
done on an ensemble of samples. What 
we really need to know is the probability 
distribution of Im S, not its average, be- 
cause it is only each specific instance we 
are interested in. I would like to empha- 
size that this is the important, and deeply 
new, step taken here: the willingness to 
deal with distributions, not averages. 
Most of the recent progress in the funda- 
mental physics of amorphous materials 
involves this same kind of step, which 
implies that a random system is to be 
treated not as just a dirty regular one, but 
in a fundamentally different way. 

Having taken this point of view, it is 
sufficient to study only the first term of 
Eq. 20, it turns out. Let us first pick a 
finite s, and then take the limit as s -> 0. 
With a finite s 

Im - I 
I-ViJl' Im i E 

(E - Ej)2 + S2 

The condition that Ej appear as a peak 
of Im (i/s) is that Ej be within s of E, and 
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Fig. 16 (left). (a) Im Gii in extended case. (b) Im Gii in localized case. 
tree on which localization theory is exact. 

Fig. 17 (right). Cayley 

that Vij > s. To assess the probability 
that Vij is large enough, use the phys- 
ically realistic assumption of exponential 
wave functions 

V(R) = Vo e-R/Ro 

In the energy interval of size s, there will 
be ns/W energies Ej per unit volume (N 
is the site density per unit volume), while 
V > s implies 

s 
V > s : R < Ro In Vo 

and the probability that both V > s and 
E -Ej < s is 

the next of order 1/2, and so on (see Fig. 
16b). Thus, Im Gii is a sum of discrete 
infinite series of 6 functions with con- 
vergent coefficients. This is the localized 
case. 

That is more than enough mathemat- 
ics, and is all that we will need. The rest 
boils down simply to the question of 
when this lowest-order treatment is justi- 
fied, and how it breaks down. 

The bulk of the original paper was con- 
cerned with how to deal with the higher 
terms of the series and show that they do 
not change things qualitatively: what 
they do, actually, is just to renormalize 

Vij and the Ej's so that even if Vij is short 
range initially, it becomes effectively ex- 
ponential; and, of course, the Vij's 
broaden the spectrum. If this is the case, 
one then realizes that the extended case 
can only occur because of a breakdown 
of perturbation theory. This comes about 
as the higher terms of perturbation theo- 
ry renormalize V(Rj) and stretch it out to 
longer and longer range, so that the ex- 
ponentially localized functions become 
less so and finally one reaches a mobility 
edge or "Anderson transition." 

Here we begin to tie in with some of 
the ideas which Professor Mott will de- 

P(V> s,E - Ejl < s) = 

N 3 iW Vo) 

P(s -> 0) = 0 

It is easy to formalize this: one may 
show that the probability distribution of 
Im E is essentially 

lim pIm( = XdX= 
s--O i S ] 

dX e-sX 
X3/2 

(22) 

which indeed has a divergent average as 
it should, but is finite nonetheless, so 
that Im E c s and there is not a finite cut 
at the real axis. 

When we stop and think about what 
this means, it turns out to be very 
simple. It is just that we satisfy the sum 
rules (Eq. 17) not by each b,(i) being in- 
finitesimal, but by a discrete series of fi- 
nite values: the biggest ,fi is of order 1, 
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Fig. 18. Computer demonstration of localization: (a) W/V - 5.5; (b) W/V = 8.0. [Courtesy of 
Yoshino and Okazaki (42)] 

315 

e- 
a 

z 

(D 

E 

c) 

LL 

(3 

E 
!--4 

(.9 

. _ Et 
EZ 

.o_ 

+ 
LUl 

(. 

E 
4-A 

I o E _ 
(n 

i i,, E E 

A 
E 



I A I~~~~~i I ""Wd',,ll, ill iimr!? cmml.n'/''i?," ^mlajtf Alice?. kf;fj st i;l | mutiy it 

l 1< 

Fig. 19. Efforts to avoid locali- 
zation (Dodson). 

ra l very+\\ f^ t.sti . [m? }i{}' P ? l;'mi B$t't v;r ' 
D Ilir 't'fl <i .': ' pA. o>n ^?l (f collfl-?Iv 

", 
?^ d Ile ( ir lia\ v . 

scribe. First, it is evident that the self- 
energy series is a function of E-that is, 
of where we are on the real energy axis- 
so it will cease to converge first at one 
particular energy E, the mobility edge. 
For a given model, it is reasonable-in 
fact, usual-to have the localized case 
for some energies, the extended one for 
others, separated by a mobility edge. 
The significance of this fact was realized 
by Mott. 

The actual calculation of this diver- 
gence or Anderson transition was carried 
out by me using conservative approxi- 
mations in the original paper, but it was 
only much later realized (37) that that 
calculation was exact on a Cayley tree or 
Bethe lattice (Fig. 17). Much earlier, 
Borland (38) and Mott and Twose (39) 
had shown that localization always oc- 
curs in one dimension (also a Cayley tree 
case, with K= 1). Since it is easy to 
convince oneself that the Cayley tree is a 
lattice of infinite dimensionality d 
(though finite neighbor number) it is 
likely that delocalization first occurs at 
some lower critical dimensionality dc, 
which we now suspect to be 2, from Lic- 
ciardello and Thouless' scaling theory 
(40). This dimensionality argument (or 
equivalent ones of Thouless) first put to 
rest my earliest worry that my diagram 
approximations were inexact: in fact, 
they underestimate localization, rather 
than otherwise. A second reason why I 
felt discouraged in the early days was 
that I could not fathom how to reinsert 
interactions, and was afraid they, too, 
would delocalize. The realization that, of 

course, the Mott insulator localizes with- 
out randomness, because of interactions, 
was my liberation on this: one can see 

easily that the Mott and Anderson ef- 
fects supplement, not destroy, each oth- 

er, as I noted in some remarks on the 
"Fermi glass" (41) which more or less 
marked my reentry into this problem. 
The present excitement of the field for 
me is that I feel a theory of localization 
with interactions is beginning to appear, 
in work within my group as well as what 
Professor Mott will describe. It is re- 
markable that in almost all cases inter- 
actions play a vital role, yet many results 
are not changed too seriously by them. 

I will close, then, and leave the story 
to be completed by Professor Mott. I 
would like, however, to add two things: 
first, a set of figures of a beautiful com- 

puter simulation by Yoshino and Oka- 
zaki (42), which should convince the 
most skeptical that localization does oc- 
cur. The change in W between these two 

figures is a factor 1.5, which changed the 

amplitudes of a typical wave function, as 

you see, from extended to extraordinar- 

ily well localized (see Fig. 18). 
Finally, you will have noted that we 

have gone to extraordinary lengths just 
to make our magnetic moments, in the 
one case, or our electrons, in the other, 
stay in one place. This is a situation 
which was foreshadowed in the works of 
an eminent 19th-century mathematician 
named Dodson, as shown in the last fig- 
ure (Fig. 19). "Now here, you see, it 
takes all the running you can do, to keep 
in the same place." 
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