
sufficiently arousing to increase the in- 
gestion of any stimulus, the same experi- 
ment was repeated with distilled water 
substituted for 0.03M sucrose as the 
taste stimulus. Under these circum- 
stances the amount consumed by both 
decerebates and controls during de- 
privation did not differ from the amount 
consumed when they had just been fed 
(19). 

Hunger has been operationally defined 
as an increase in food consumption as a 
function of food deprivation; satiation is 
defined conversely (20). Our data sup- 
port the hypothesis that at least some of 
the normal control mechanisms of hun- 
ger and satiation are restricted to the 
caudal brainstem. Previously these 
mechanisms had been assigned exclu- 
sively to hypothalamic-forebrain struc- 
tures. 

The two experiments reported here 
are parallel in that they examine whether 
the response to a constant stimulus is al- 
tered as a function of changes in internal 
state; they differ in that in one case the 
viscerally applied stimulus is ongoing 
(food in the gut) and in the other the 
stimulus was applied previously (LiCl in 
the gut). The decerebrate rat required 
that the visceral stimulus be ongoing or 
present in order for ingestion of a taste 
stimulus to be replaced by rejection. It is 
conceivable that if the decerebrate ani- 
mal were tested during rather than after 
the period of LiCl stimulation, the 
formerly accepted taste would be re- 
jected. Although the hypothalamus or 
forebrain may be instrumental in con- 
trolling ingestion, the data suggest that 
aspects of this control may also be repre- 
sented at other, more caudal levels of the 
mammalian brain. 
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for the actual lowering of the spatula into the 
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15. The taste stimulus, 0.1M NaC1 (four rats) and 
0.03M HCI (three rats) injected intraorally in 50- 
tul volumes, elicited an ingestion sequence be- 
fore LiCl pairing. The NaCl and HCI (rather 
than sucrose) were used as paired taste stimuli 
to eliminate the possibility that daily tube-feed- 
ings of a sweetened milk diet might serve as ex- 
tinction trials for a sucrose stimulus. Taste and 
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weight, intraperitoneally) were paired once on 
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fore complete transection; LiCl was injected im- 
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transection, and retention with exogenous 
arousal (tail pinch during and immediately be- 
fore the test) on day 11. Acquisition and acquisi- 
tion with exogenous arousal were each exam- 
ined during four consecutive days of taste-LiCl 
pairings. The acquisition experiment began on 
day 15, and acquisition with exogenous arousal 
[intraperitoneal injections of d-amphetamine 
sulfate (0.5 mg/kg) given 1/2 hour before testing] 
on day 55. All responses were videotaped. 

Several studies have suggested that behavior- 
al deficits accompanying neurological damage 
are not necessarily explained by the loss of the 
behavior's neural substrate. A more general 
process, reduction of a tonic activation system, 
may obscure interpretation. In certain in- 
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investigations at the cellular level to pro- 
vide critical information on the local- 
ization and function of neurons involved 
in PGO wave generation and transmis- 
sion. 

As a first step in defining the neuronal 
network involved in the chain of events 
leading to PGO wave generation, it is im- 
portant to identify the set of neurons 
forming the last link of this chain, that is, 
to identify a set of output neurons for 
PGO wave generation. Once such neu- 
rons have been identified one can work 
backward in the PGO generation net- 
work, tracing the inputs to these final 
stage or output cells. We reason that cri- 
teria for identification of such output 
generator cells for PGO waves should in- 
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clude: high discharge coherence with 
PGO waves (discharge bursts associated 
with each wave); high discharge specific- 
ity (relative absence of discharge at other 
times); a fixed phase lead of discharge 
bursts relative to PGO waves; and evi- 
dence of projection to sites where PGO 
waves are recorded. Furthermore, out- 
put cells might evince a particularly stig- 
matic, stereotyped discharge pattern in 
contrast to other neurons in the PGO 
generation network. 

In previous studies we found some 
neurons in the giant cell field of the pons 
[gigantocellular tegmental field (FTG)] 
that increased discharge rate up to 900 
msec before the onset of PGO waves. 
While this impressively long phase lead 
is compatible with these cells playing a 
role in the initiation of events leading to 
PGO wave generation, the discharge co- 
herence and specificity were not impres- 
sive and the phase-leading discharges 
were variable in both intensity and dura- 
tion of lead, suggesting these cells were 
not output generator neurons for PGO 
waves (3). 

Some cells in locus coeruleus and sub- 
coeruleus have been noted to fire at 
shorter intervals before PGO waves, but 
with low coherence and specificity (4). 
Recently, some neurons in the nucleus 
parabrachialis lateralis have been report- 
ed to have good specificity and a fixed 
latency discharge pattern, but only mod- 
erate coherence (5). Thus, while all of 

Table 1. Temporal sequence of PGO wave 
and unit events. All times are relative to the 
peak of PGO waves recorded in LGN; aver- 
ages are from all 13 units and ipsilateral PGO 
waves (with a minimum of a 1-second separa- 
tion from preceding PGO waves); S.D., stan- 
dard deviation. 

Time (msec) 
(mean ? S.D.) 

Eve 

-46.5 ? 4.4 First PGO burst cell 
discharge 

-39.3 ? 4.5 Peak in unit discharge; LGN 
EEG still at baseline 

-34.0 ? 1.2 PGO wave begins 
0.0 PGO wave peak 

(reference point, to) 

these cells may be part of a PGO genera- 
tion network, none have the qualities ex- 
pected of neurons serving as the output 
generators for PGO waves. 

We now report a class of neurons 
whose discharge shows the highest de- 
gree of coherence with PGO waves yet 
discovered, and whose PGO wave rela- 
tionships of specificity and a fixed phase- 
leading discharge pattern make them 
prime candidates for output generators 
for PGO waves. We call these neurons 
PGO burst neurons. Defining character- 
istics of this class of cells are: discharges 
in bursts of two to six spikes tightly 
linked to PGO waves; a first spike that 
occurs, with minimal variability, 12 msec 
before the onset of PGO waves and 45 
msec before the PGO wave peak in LGN 

recordings; a high degree of PGO wave 
coherence; and high PGO wave specifici- 
ty. This report describes the discharge 
characteristics and anatomical local- 
ization of PGO burst cells (6). 

Extracellular recordings of single cell 
potentials were obtained with metal mi- 
croelectrodes in unanesthetized and 
head-restrained cats as previously de- 
scribed (7). Standard macroelectrodes 
were implanted to record electrooculo- 
gram (EOG), nuchal electromyogram 
(EMG) and frontoparietal electroenceph- 
alogram (EEG); a set of four electrodes 
was implanted in each LGN to record 
PGO waves and to stimulate with a con- 
stant current stimulator. Placement of 
the LGN electrodes was guided by the 
evoked potential response recorded from 
them during strobe stimulation of the ret- 
ina. We used conventional criteria to de- 
fine state (8). Correlations between PGO 
waves in the LGN and unit acitvity were 
documented by means of frequency- 
modulated tape recordings, photograph- 
ic and paper records, and by a computer 
program that detected PGO waves, aver- 
aged the wave forms, cross-correlated 
them with unit firings, and provided 
autocorrelograms for both PGO waves 
and the unit discharges (9). Stationarity 
of unit discharge-PGO wave relation- 
ships was indicated by consistent results 
on repeated recordings (up to 16) of suc- 
cessive transition periods from synchro- 
nized to desynchronized sleep. We mea- 
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Fig. 1. (a) This inkwriter record of a transition period shows the con- 
sistent phase-linking between PGO waves recorded in the left (LGL) 
and the right lateral geniculate (LGR) nuclei and the discharges of a 
PGO burst cell (Unit). See text for other abbreviations. Time in sec- 
onds. Voltage calibration: LGN channels, 200 I,V; other channels 
(upper right), 100 AuV. (b and c) Oscilloscope photos of a PGO burst 
cell (upper trace) and ipsilateral LGN PGO waves (lower trace) show- 
ing stereotyped unit discharge bursts and tight phase-linking to the 
PGO waves. Each burst has five spikes and the initial spike occurs 
about 45 msec before the PGO peak. Time calibration: (b) 200 msec; 
(c) 50 msec. Voltage calibration for both unit records is 100 ,V (nega- 
tivity up) and 200 tLV for the PGO records. Simultaneous occurrence 
of a negative field potential (which may reflect depolarizing input) and 
unit burst is evident in the less filtered unit record in (c) (lower - 3-dB 
point, 1 Hz). (d) Cross-correlation between 12 isolated transition peri- 
od PGO waves (average wave form is displayed, amplitude, 220 /V; 
peak, time 0) and the discharges of a PGO burst cell (maximum, 17 
discharges per bin). Time in milliseconds; bin width, 10 msec. Note 
the extremely tight and virtually noiseless coupling between PGO 
burst cell discharge and PGO waves. 
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sured coherence as the percentage of 
PGO waves preceded by a unit discharge 
burst and specificity as the percentage of 
unit discharges occurring in bursts pre- 
ceding PGO waves. The data base for 
this report includes 13 PGO burst cells in 
three cats and the analysis of 70 transi- 
tion and desynchronized sleep periods. 

Figure la shows a polygraphic record 
segment of one PGO burst unit during a 

typical transition period. Coherence is 
100 percent in this segment; for the en- 
tire transition period, discharge bursts 

preceded 32 out of 36 PGO waves (co- 
herence, 89 percent). In this record there 
is also a high specificity of discharge: no 
bursts occur except in relation to PGO 
waves in the displayed segment and for 
the entire transition period only one 
burst occurred without a succeeding 
PGO wave. In the six units with the tech- 
nically best recordings, coherence val- 
ues ranged from 60 to 93 percent and av- 
eraged 80 percent; specificity values 
ranged from 79 to 99 percent and aver- 

aged 91 percent (10). The PGO burst 
neurons were silent or had very low dis- 

charge rates in synchronized sleep and 
quiet waking without eye movements 
(< 0.5 spike per second), but often dis- 

charged single spikes in relation to eye 
movements or sudden arousal. 

Figure 1, b and c, and Table 1 illustrate 
the consistent phase relationships be- 
tween PGO burst cell discharge and ip- 
silateral PGO waves: the first spike pre- 
cedes PGO wave onset by about 12 
msec, and precedes the PGO wave peak 
by 45 msec. The PGO burst cells were 
remarkably uniform in their discharge 
characteristics, having very similar 
cross-correlograms with PGO waves 
(Fig. Id). 

Figure 2 shows the histological local- 
ization of PGO burst cells on a micro- 
electrode descent at lateral 1.6 that 
passed through the cerebellum and 
ended in the central tegmental field in 
close approximation to the brachium 
conjunctivum. A microlesion (arrow) 
marks the recording site of one PGO 
burst cell; another burst cell was record- 
ed 0.1 mm distant. Rather than inclusion 
in any one nuclear group, the critical an- 
atomical localizing feature was proxim- 
ity to the brachium conjunctivum. All 
PGO burst cells were recorded in a dis- 
crete dorsal brainstem area that extends 
between 1.4 and 4.0 mm from the midline 
and lies along the border of the brachium 
conjunctivum as it passes through the 
marginal nucleus and the anterior pole of 
the locus coeruleus to enter the central 
tegmental field. Only this area has been 
positive for PGO burst cells, although 
the brainstem region we have sampled in 
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Fig. 2. Histological reconstruction in a sagittal section of a microelectrode descent with a micro- 
lesion near the site of recordings of two PGO burst cells (arrow) and a more posterior descent 
negative for burst cells (see text). The anterior descent was typical of those yielding PGO cells 
in that it ran parallel to the posterior border of the brachium conjunctivum (BC), indicated in the 
drawing by the densely packed fibers just anterior to the locus coeruleus (LC) and ended in the 
dorsal part of the central tegmental field (FTC). Other positive descents were found more later- 
ally at the same depth and in the same relationship to the brachium conjunctivum. 

over 100 descents in this and other ex- 
periments is quite large, extending ros- 
tro-caudally from the red nucleus to the 
ponto-medullary junction and from the 
midline to 4 mm laterally (11). 

The combination of the extraordinarily 
strong correlational linkage between 
PGO burst cell discharge and lateral ge- 
niculate nucleus PGO waves reported 
here, and the evidence obtained with 
horseradish peroxidase of direct projec- 
tion to LGN of some cells in the area of 
the brachium (12) suggested that the cells 
we recorded might project directly to 
LGN. In six PGO burst cells we thus at- 
tempted antidromic activation from the 
electrodes used for PGO recording in the 
LGN. No cells were antidromically acti- 
vated but five of the six cells examined 
responded orthodromically at latencies 
of 5 to 25 msec. One of these showed a 
state-dependent orthodromic driving: it 
could be driven in desynchronized sleep 
but not in waking by stimulation of the 
LGN. In recent experiments we have ob- 
served that LGN electrical stimulation 
during desynchronized sleep produces 
both evoked PGO waves and PGO burst 
cell discharge that has the same burst 
characteristics and phase as with sponta- 
neous PGO waves. 

Further antidromic stimulation tests at 
different LGN sites will have to be con- 
ducted to enable us to determine wheth- 
er monosynaptic projections from burst 
cells to LGN exist; the latency measure- 
ments (Table 1) suggest slow conduction 
velocities but by no means rule out 
monosynaptic projection. If the projec- 
tions are polysynaptic to LGN, a pos- 
sible site for interposed neurons is the 
perigeniculate or reticular thalamic nu- 

cleus (13). A third possibility is that the 
PGO burst cells we have recorded may 
project to visual cortex or to some other 
component of the PGO conduction sys- 
tem. 

With respect to theories of PGO wave 
generation, the high coherence of these 
cells (all > 50 percent) gives no support 
to the notion derived from cooling and 
macropotential studies that there are iso- 
lated bilateral PGO generators with sepa- 
rate pathways through the mesencepha- 
Ion (14). That hypothesis implies that 
each PGO burst cell should only dis- 
charge before 50 percent of the PGO 
waves. Our data indicate that the likeli- 
hood of such a 50 percent discharge co- 
herence being true is less than I in 10 bil- 
lion (15). 

Neither do these results support the 
hypothesis that catecholamine-contain- 
ing neurons of the middle and caudal 
locus coeruleus play an active, ex- 
citatory role in PGO wave generation 
(16), because the discharge pattern of the 
PGO burst cells is quite different from 
that reported of neurons in portions of 
the locus coeruleus not bordering the 
brachium (17). In fact, since many locus 
coeruleus neurons, as well as those in 
dorsal raphe, decrease discharge rate 
with PGO onset, these neurons may in- 
stead act in a permissive, disinhibitory 
manner in PGO wave generation (18). 

We propose the following hypothesis 
about events leading to LGO wave gen- 
eration: the sequence begins with the ac- 
tivation of FTG cells, possibly as a result 
of disinhibition by locus coeruleus and 
raphe cells. The FTG cells then activate 
the burst cells directly or, more likely, 
indirectly via vestibular and oculomotor 
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system connections. The PGO burst 
cells form the final link in the chain, act- 
ing as output generators for the PGO 
waves by integrating information from 
other pontine systems and transmitting it 
to forebrain. 
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sostigmine enhanced both storage and 
retrieval of information in a patient with 
impaired cognitive function (5). How- 
ever, any enhancement of human memo- 
ry is apparently limited to a narrow dose 
range of physostigmine (6, 7). 

In this study normal subjects received 
low doses of either physostigmine or sa- 
line placebo. When the subjects received 
physostigmine they showed a significant 
improvement in storage of information 
compared to their performance when 

they received the placebo. These results 
have implications for the treatment of 
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people with a variety of memory dis- 
orders. 

The subjects were 19 normal male vol- 
unteers (18 to 35 years) who gave their 
informed consent to participate in this 
study. They were chosen according to 
their performance on a verbal learning 
task identical to the test used to measure 
the effect of physostigmine. Subjects 
were excluded if their performance on 
the screening task indicated there was no 
opportunity for improvement (8). 

The subjects received 1.0 mg of physo- 
stigmine or 1.0 mg of saline on two non- 
consecutive days. The order of infusions 
was randomized. Physostigmine or the 
saline placebo was administered by a 
constant infusion over 60 minutes. Ap- 
proximately 20 minutes prior (-20) to 
the start of either infusion the subjects 
received 0.5 mg of methscopolamine 
bromide subcutaneously in order to 
block the peripheral effects of physostig- 
mine. When the pulse rate reached 100 
beats per minute the infusion was begun. 

The experiment was designed (Table 
1) so that we could measure short-term 
(STM) and long-term (LTM) memory 
functions. Two tests of STM were used: 
the digit span and memory scanning task 
of Sternberg (9). The digit span task de- 
termines the capacity of STM by mea- 
suring the maximum number of digits 
that a subject can recall correctly after a 
single presentation (10). Digit span mea- 
sured 9 minutes after (+9) the start of 
infusion with physostigmine (when the 
subjects had received 0.15 mg) was 6.8 
digits, and with saline was 6.9 digits. The 
memory scanning task measures the rate 
of processing in STM. Subjects make de- 
cisions about the contents of STM and 
register those decisions allowing mea- 
surement of the response speed. Two 
components of response time can be dis- 
tinguished: one is a function of STM 
processing speed and one is a function of 
stimulus encoding and motor response 
processes. A dose of 0.75 to 1.0 mg of 
physostigmine had no significant effect 
on either component (8). Thus, physo- 
stigmine, compared to saline, had no 
quantifiable effect on any aspect of STM 
functioning. 

We assessed LTM functioning by 
means of two verbal learning tasks (10). 
The first tested the hypothesis that phy- 
sostigmine would enhance the ability to 
retrieve information from LTM. Thirty 
minutes prior to either infusion the sub- 
jects were given two learning trials on a 
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subject tried to recall the 15 words at the 

SCIENCE, VOL. 201, 21 JULY 1978 

list of 15 concrete nouns. The 15 nouns 
were presented verbally to the subject at 
the rate of one word per 2 seconds. The 

subject tried to recall the 15 words at the 

SCIENCE, VOL. 201, 21 JULY 1978 

Physostigmine: Improvement of Long-Term Memory 
Processes in Normal Humans 

Abstract. Nineteen normal male subjects received 1.0 milligram of physostigmine 
or 1.0 milligram of saline by a slow intravenous infusion on two nonconsecutive days. 
Physostigmine significantly enhanced storage of information into long-term memo- 
ry. Retrieval of information from long-term memory was also improved. Short-term 

memory processes were not significantly altered by physostigmine. 
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