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Receptors for Giucocorticoids in the Lens Epithelium of the Calf 

Abstract. The calf lens epithelium contains a specific cytoplasmic receptor for 
glucocorticoids. This binding protein has a high affinity for dexamethasone (average 
dissociation constant, 8 x 10-9 mole per liter), a low capacity (average, 550 femto- 
moles per milligram of protein), extreme heat sensitivity, and exhibits a pattern of 
competition similar to that of glucocorticoid receptors in other tissues. This provides 
direct biochemical evidence that these tissues may function as a target organ for 
glucocorticoids. 

Glucocorticoids have been shown to 
induce posterior subcapsular cataract in 
man following both topical and systemic 
administration (1). It is not known, how- 
ever, whether the steroid hormones pro- 
duce this effect by a direct action on lens 
tissue or through some secondary altera- 
tion of metabolism at another site. Since 
the primary action of a steroid hormone 
is its binding to a cytoplasmic receptor 
protein, we have initiated a search for 

glucocorticoid receptors in lens tissue. 
We report here on the presence of a 
glucocorticoid receptor in calf lens epi- 
thelium, which provides direct biochemi- 
cal evidence that these cells may func- 
tion as a target organ for glucocorticoids. 

Calf lens was used since large amounts 
of tissue were readily available (2). For 
each experiment we-used extracts pre- 
pared from 20 to 50 anterior capsules 
with adhering epithelial cells (3). The 
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Fig. 1. Binding of various concentrations of dexamethasone to extracts of lens tissue. (A) Total 
amount of steroid bound (closed symbols) and amount of nonspecifically bound steroid (open 
symbols) for extracts from the lens epithelium (circles) and the lens nucleus (triangles). (B) 
Nonspecifically bound steroid has been subtracted from the total, and the specifically bound 
steroid is expressed in femtomoles per milligram of protein in the extracts. (C) Scatchard plot of 
the specifically bound dexamethasone. The equilibrium constant for the dissociation of the 
bound steroid, KD, calculated from the slope, is 6 xK 10-9M. The protein concentrations in the 
extracts were: lens nucleus, 4.7 mg/ml, and lens epithelium, 1.26 mg/ml. 
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extracts were incubated with varying 
concentrations of tritium-labeled dex- 
amethasone (specific activity, 20 Ci/ 
mmole) at 0?C for 18 to 20 hours unless 
otherwise specified. The incubate was 
then applied to a small Sephadex G-50 
column to separate macromolecule- 
bound from free hormone, as recently 
described for iris and ciliary body (4). 

Figure I A is a typical experiment show- 
ing the amount of [3H]dexametha- 
sone bound, with and without an excess 
of nonlabeled dexamethasone, to ex- 
tracts prepared from lens epitheliurm and 
from lens nucleus at various hormone 
concentrations. The nonspecific bind- 
ing-that is, the amount of radioactivity 
still bound in the presence of a large ex- 
cess of nonlabeled steroid-is the same 
for both of these tissues. The total 
amount of dexamethasone bound, how- 
ever, is much greater in the epithelium 
than in the lens nucleus. Figure lB in- 
dicates the amount of dexamethasone 
specifically bound to extracts of the lens 
epithelium and lens nucleus as a function 
of steroid concentration. At concentra- 
tions as low as 5 x 10-9M specific bind- 
ing of the steroid to the lens epithelium is 
readily seen, and saturation is reached at 
a concentration of about 5 x 10-8M. By 
contrast, the specific binding of dexa- 
methasone to extracts of lens nucleus is 
low and does not approach saturation 
even at steroid concentrations as high as 
2 x 10-7M. In the Scatchard plot (Fig. 
IC), the high affinity (KD= 6 x 10-9M) 
and low capacity (600 femtomoles per 
milligram of protein) of the steroid bind- 
ing to the extract from lens epithelium is 
apparent (5). The linear Scatchard plot 
obtained with lens epithelium indicates a 
single class of binding sites. On the other 
hand, dexamethasone binding to the lens 
nucleus exhibits high capacity with no 
evident saturation. Although a small 
amount of high-affinity binding sites may 
be present in the lens nucleus, the con- 
centration of these sites is at most 10 per- 
cent of that found in the lens epithelium. 
This finding is consistent with the origin 
of this tissue from lens epithelium. 

Figure 2 demonstrates the extreme 
heat lability of dexamethasone binding to 
the lens epithelium. At 20? and 30?C sig- 
nificant binding activity is destroyed, in- 
dicating that the binding is to a very heat- 
labile material. By contrast, steroid bind- 
ing to the lens nucleus is stable even at 
50C. 

Competition experiments with a varie- 
ty of steroid hormones were undertaken 
to further characterize the specificity of 
the dexamethasone binding to extracts 
from lens epithelium (4). Cortisol is the 
strongest competitor after dexametha- 
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Fig. 2. Thermal stability of specific dexa- 
methasone binding activity of lens tissue. Ex- 
tracts from the lens epithelium (closed circles) 
and the lens nucleus (open circles) were 
heated to the indicated temperatures for 30 
minutes, cooled to 0?C, and then incubated 
with [3H]dexamethasone overnight. The 
amount of specifically bound dexamethasone 
is expressed relative to that in an unheated 
control. The protein concentrations in these 
extracts and times of incubation were: lens 
nucleus, 4.6 mg/ml, 17 to 20 hours; and lens 
epithelium, 0.81 mg/ml, 0.5 to 3 hours. 

sone. As expected, progesterone, while 
not possessing glucocorticoid activity, 
significantly suppresses dexamethasone 
binding. The sex steroids estradiol and 
dihydrotestosterone show virtually no 
competition, whereas the biologically in- 
active 20/3-cortol and 20j3-dihydrocorti- 
sol demonstrate no competition when 
present in a 20-fold molar excess and on- 
ly slight competition (40 percent) when 
present in a 200-fold molar excess 
(10-54M). 

Since all preparations of lens epithe- 
lium contain contaminating capsular ma- 
terial, the posterior capsule, which does 
not contain an underlying epithelial lay- 
er, was assayed as a control. The tissue 
was found to have only a small amount 
of steroid-binding activity (less than 10 
percent of that of lens epithelium), which 
was largely heat-stable. Similarly, aque- 
ous humor showed only negligible ste- 
roid-binding activity. Thus, the high 
amount of heat-labile steroid-binding ac- 
tivity seen in the extracts of lens epithe- 
lial cells is not due to contaminating cap- 
sular material or aqueous humor. In ad- 
dition, an extract of the lens epithelium 
was incubated with labeled dexametha- 
sone for 21 hours at 0?C to determine 
whether dexamethasone or a minor con- 
taminant was actually binding to the re- 
ceptor. The bound steroid was isolated, 
extracted with ethyl acetate, and ana- 
lyzed by thin-layer chromatography as 
described previously (6). More than 90 
percent of the bound material was found 
to migrate as authentic -dexamethasone. 

The presence of high-affinity and low- 
capacity binding, the extreme heat sensi- 
tivity, and the pattern of competition all 
suggest that the lens epithelium contains 
a specific cytophasmic glucocorticoid re- 
ceptor both qualitatively and quantita- 

tively similar to that found in other target 
tissues such as the liver (7). The normal 
pattern of differentiation of lens epithe- 
lial cells into mature fiber cells is accom- 
panied by characteristic morphological 
and biochemical events. Among these 
are the synthesis of the messenger 
RNA's coding for the crystallins and a 
change in the pattern of lactate dehy- 
drogenase isoenzymes (8). In view of our 
finding of glucocorticoid receptors in 
lens epithelial cells, these steroids may 
have a physiological role in the regula- 
tion of differentiation of these cells. Fur- 
ther studies are necessary to determine 
the mechanism by which glucocorticoids 
affect cell differentiation and, under 
pharmacological conditions, produce a 
posterior subcapsular cataract. 
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