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Thus, the spinal motor neuron is be- 
lieved to exert a trophic effect on the end 
plate AChE. 

We do not know how the motor neu- 
ron regulates muscle AChE activity, but 
several mechanisms have been pro- 
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posed, including muscle activity (6), ace- 
tylcholine (ACh) release (7), and neu- 
rotrophic substances (8). Recent evi- 
dence indicates that a neurotrophic 
substance transported by axoplasmic 
flow might be responsible for regulation 
of muscle AChE. Blockage of axo- 
plasmic flow by colchicine or vinblastine 
causes a decrease in muscle AChE with- 
out disturbing ACh release and con- 
sequent muscle activity (9). 

Although organ culture of adult mus- 
cles results in a loss of muscle AChE as a 
result of denervation (10, 11), addition of 
nerve homogenates to the nutrient medi- 
um of muscle cultures prevents the de- 
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crease in AChE activity (10). An aque- 
ous extract of adult peripheral nerves in- 
creases the AChE activity of cultured 
aneural embryonic muscle (12). These 
results thus indicate that the trophic ef- 
fect on muscle AChE is mediated by a 
substance produced by nerves. Recent- 
ly, we isolated and partially purified a 
protein fraction from peripheral nerves 
which enhances morphological differ- 
entiation, stimulates protein synthe- 
sis, and increases the creatine kinase 
(CK) activity of cultured muscle cells 
(13). We now report that this protein 
fraction regulates AChE activity in cul- 
tured muscle. 

Myogenic cells (3 x 105) were ob- 
tained from trypsin-dissociated thigh 
muscles of 11-day chick embryos (14) 
and were cultured in a collagen-coated 
plastic dish (13). Also, slow muscles [an- 
terior latissimus dorsi (ALD)] and fast 
muscles [posterior latissimus dorsi 
(PLD)] were isolated aseptically from 41- 
week-old chickens (White Leghorn) and 
cultured in collagen-coated dishes. The 
cultures were maintained in a medium of 
65 percent Dulbecco's modified Eagle's 
medium, 10 percent horse serum, 2.5 
percent chick embryo extract (brain and 
spinal cord excluded), 20.5 percent 
Hanks balanced salt solution, and 2 per- 
cent glucose (20 percent stock solution), 
and fed with fresh medium every 3 days. 
An active peripheral nerve (PN) protein 
fraction was obtained from chicken 
sciatic nerve extracts by gel filtration on 
Sephadex G-200 (15). The AChE activity 
of muscle homogenates was measured 
by a modification (3) of the method of 
Ellman et al. (16) in the presence of 
10-4M iso-OMPA (tetraisopropylpyro- 
phosphoramide), an inhibitor of nonspe- 
cific cholinesterase. Noncollagen protein 
was determined as described by Rifen- 
berick et al. (17), using the method of 
Lowry et al. (18). 

Figure 1 shows the change in AChE 
activity during differentiation of embry- 
onic muscle cells in culture. The AChE 
activity increased markedly during the 
period of fusion (between 28 and 72 
hours) (19). Thereafter it decreased rap- 
idly as muscle maturation progressed. 
By day 8, muscle fibers exhibited cross- 
striations and spontaneous contractions. 
The AChE activity decreased moder- 
ately between 8 and 12 days in culture. 
Addition of an active PN protein fraction 
(61 Lg/ml) to cross-striated mature 
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muscle cultures prevented a further de- 
crease in muscle AChE activity, whereas 
the inactive PN protein fractions (15) 
were ineffective (Fig. 1). 

To determine whether this phenome- 
non resulted from simple enzyme induc- 
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Table 1. Effects of cycloheximide and acti- 
nomycin D on AChE activity of active PN 
protein-treated skeletal muscle cells in cul- 
ture. Activity is expressed as micromoles of 
acetylthiocholine hydrolyzed per hour per 
milligram of protein. Each value is the mean 
+ S.E. for six dishes. 

AChE activity Treatment 
(/zmole/hour-mg) 

Control 1.58 + 0.17 
Cycloheximide (10-5M) 1.10 + 0.05* 
Actinomycin D (2 u/g/ml) 1.99 + 0.04t 

*Significant decrease (P < .05) from control val- 
ue. tSignificant increase (P < .05) over control 
value. 

tion, cycloheximide (10-5M) or actino- 
mycin D (2 ,/g/ml) was added to mus- 
cle cultures (8-day) immediately after 
the addition of an active PN protein 
fraction (Table 1). After 18 hours in the 

presence of the protein synthesis inhib- 
itors, the AChE activity of muscle cells 
was determined. Cycloheximide caused 
a significant decrease in AChE levels 
compared to those in inhibitor-free cul- 
tures. By contrast, actinomycin D 
caused a "superinduction" of AChE as 
evidenced by an increase in AChE activ- 

ity. These results seem to indicate that 
the maintenance of AChE levels by the 
active PN protein fraction is regulated by 
a posttranscriptional mechanism (20). 

Since adult muscles lose AChE activi- 

ty in organ culture as a result of denerva- 
tion (10, 11), we investigated whether the 
active PN protein fraction would main- 
tain the AChE activity of cultured mus- 
cles. Table 2 shows that addition of the 
active PN protein fraction (62 /xg/ml) to 
the media of adult chicken ALD and 
PLD muscles prevented loss of muscle 
AChE compared to that in uncultured 
muscles. However, the control lost sig- 
nificant AChE activity during the 6 days 
in culture. Also, the inactive PN protein 
fractions (44 tug/ml) were ineffective in 

maintaining muscle AChE activity. 
The effect of surgical denervation on 

muscle AChE activity in chickens is a 
controversial subject. Vigny et al. (2) re- 

ported that denervation caused a signifi- 
cant decrease in the AChE activity of 
both slow (ALD) and fast (PLD) mus- 
cles. The molecular weight distribution 
of AChE extracted from normal and de- 
nervated muscles with Triton X-100 and 
separated by sucrose gradient centrifu- 
gation revealed that the highest-molecu- 
lar-weight form (19.5S), which is associ- 
ated with motor end-plate regions, dis- 

appeared after denervation (2). Wilson 
and co-workers (21) showed that the to- 
tal AChE activity of denervated muscle 
homogenates was three to four times 
higher than that of normal muscle ho- 
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mogenates. The increase in AChE activi- 
ty not in end-plate regions coincided with 
the appearance of AChE in the sarco- 
plasm, whereas end-plate AChE dis- 
appeared after denervation (21). 

Embryonic and adult chicken muscles 
lose AChE activity in culture (Fig. 1, 
Table 2) and in this regard are similar to 
muscles from newt and rat (10, 11). The 
fact that a protein fraction from peripher- 
al nerves maintained the level of AChE 
in cultured muscle strongly suggests that 
a protein in this fraction mimics the 
maintenance effect of innervation on 
muscle AChE. Furthermore, that this 
maintenance effect was mediated through 
a simple nutritive effect is highly un- 
likely, since the biological activity of 
this fraction is greatly diminished on en- 
zymatic treatment with trypsin or pro- 
tease or oxidation by periodate (13). 

Neural substances transported by ax- 
oplasmic flow appear to participate in 

trophic regulation of muscle AChE, 
since application of colchicine or vin- 
blastine to sciatic nerves caused a de- 
crease in muscle AChE without affecting 
release of ACh or muscle activity (9). 
Furthermore, a similar decrease in 
muscle AChE was observed in rats with 
flaccid paralysis after the injection of 
batrachotoxin into spinal cord (22). 
Since electrical stimulation failed to re- 
store AChE activity in these animals 
(23), muscle activity can be ruled out as a 

major factor in the trophic regulation of 
muscle AChE. These reports, consid- 
ered with the data presented here, 
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Fig. 1. Effect of PN protein fractions on 
AChE activity of cultured chick embryonic 
skeletal muscle cells during myogenesis. The 
value for the cultures treated with active PN 
protein at 12 days in vitro is significantly 
greater than the corresponding control value 
(Student's t-test, P < .001), while the value 
for the cultures treated with inactive PN pro- 
tein is not significantly different from the con- 
trol value (P > .05). Each point is the mean ? 
standard error (S.E.) for 12 dishes. 

Table 2. Effects of PN protein fractions on 
AChE activity of chicken ALD and PLD mus- 
cles in organ culture. Chicken muscles (mean 
wet weight: ALD, 518 mg; PLD, 1140 mg) 
were cultured in the presence of active or in- 
active PN protein fractions. After 6 days in 
culture, the AChE activity (see Table 1) of the 
muscles was assayed. Each value is the mean 
+ S.E. for four muscles. 

Treatment 

AChE activity 
(/zmole/hour-mg) 

ALD PLD 

Uncultured 0.41 + 0.02 0.28 + 0.03 
Control 0.34 + 0.01* 0.23 + 0.02* 
InactivePN 0.34 + 0.01* 0.24 + 0.04* 

protein 
fractions 

Active PN 0.41 + 0.01 0.28 + 0.04 
protein 
fraction 

*Significantly different from uncultured muscles, 
P < .01. 

strongly reinforce the concept that a neu- 
rohumoral substance (24) is essential in 
mediating trophic regulation of muscle 
AChE. 

T. H. OH 
G. J. MARKELONIS 

Department of Anatomy, University 
of Maryland School of Medicine, 
Baltimore 21201 
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The mustache bat, Pteronotus par- 
nellii rubiginosus, emits orientation 
sounds which consist of a long constant- 
frequency (CF) component followed by a 
short frequency-modulated (FM) com- 
ponent. The long CF sound is an ideal 
signal for Doppler-shift measurement-- 
that is, for the measurement of the rela- 
tive velocity of a target-and it is also a 
good signal for target detection. The 
short FM sound, on the other hand, is 
suited for ranging, localization, and char- 
acterization of the target. In the orienta- 
tion sound, the second harmonic is al- 
ways predominant and its CF component 
is about 61 kHz (1-4). The mustache bat 
apparently uses this signal for detection 
of a moving target because it adjusts the 
frequency of the emitted CF component 
to receive a Doppler-shifted echo at a 
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certain preferred frequency (61 to 62 
kHz), to which the auditory system is 
sharply tuned. This interesting acoustic 
behavior is called Doppler-shift com- 
pensation (2). 

Peripheral auditory neurons with a 
best frequency (BF) between 60 and 63 
kHz show unusually sharp tuning (or 
threshold) curves. These sharply tuned 
neurons are apparently specialized for 
detection and frequency analysis of the 
CF component in echoes. The primary 
auditory cortex of this animal reflects 
this peripheral specialization by devoting 
a disproportionately large area to pro- 
cessing the CF component of Doppler- 
shifted echoes (Fig. 2A) (5). In this 
Doppler-shifted-CF processing area, the 
BF and best stimulus amplitude (BA) for 
the maximum excitation of a single neu- 
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ron vary systematically with the location 
of the neuron in the cortical plane. The 
iso-BF contour lines are eccentric: neu- 
rons sensitive to 61 kHz are at the center 
and those sensitive to 62 or 63 kHz are at 
the circumference. The iso-BA contour 
lines are radial: neurons tuned to weaker 
sounds are in the ventral part and those 
tuned to intense sounds are in the dorsal 
part. These tonotopic and amplitopic 
representations are apparently related to 
those of the relative velocity and sub- 
tended angle (or cross-sectional area) of 
a target. The origin of the coordinates 
representing frequency and amplitude is 
off-center in the Doppler-shifted-CF 
processing area, so that both represen- 
tations disproportionately express an 
acoustic signal of 61.5 to 62.0 kHz and 30 
to 50 dB SPL (sound pressure level) over 
a larger cortical area (Fig. 2B) (6). These 
disproportionate tonotopic and ampli- 
topic representations are apparently re- 
lated to the predominant parameters of 
the acoustic signals used for echo- 
location. 

To investigate the cortical organiza- 
tion related to the localization of a poten- 
tial target, we studied how sounds stimu- 
lating the left and right ears are repre- 
sented in the Doppler-shifted-CF pro- 
cessing area, and how this aural repre- 
sentation is related to the tonotopic and 
amplitopic representations. As described 
below, we found that this area is orga- 
nized in a very interesting way in terms 
of aural representation. That is, it con- 
sists of two functional subdivisions: one 
specialized for target detection by in- 
tegrating excitatory signals from both 
ears, and the other for target localization 
by assembling excitatory signals from 
the contralateral ear and inhibitory ones 
from the ipsilateral ear. 

The experiments were performed with 
27 mustache bats, P. parnellii rubigi- 
nosus (body weight, 20 to 25 g) from Pan- 
ama. A bat was anesthetized with so- 
dium pentobarbital (30 mg per kilogram 
of body weight) and ether when neces- 
sary, and the flat head of a nail (1.8 cm 
long) was mounted on the posterodorsal 
surface of its skull with glue and cement. 
Then the bat was placed in a soundproof 
room heated to 33? to 34?C. To immobi- 
lize the bat's head, the shank of the nail 
was locked into a hollow metal rod with 
a setscrew. The skull covering the Dopp- 
ler-shifted-CF processing area was re- 
moved. A tungsten wire electrode with a 
tip diameter of 5 to 15 ttm was orthogo- 
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nally inserted into the exposed cortical 
area to record action potentials from a 
single neuron or a cluster of a few neu- 
rons at depths between 200 and 1000 Am. 
To stimulate the left or the right ear 
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Aural Representation in the Doppler-Shifted-CF Processing Area 

of the Auditory Cortex of the Mustache Bat 

Abstract. In the mustache bat (Pteronotus parnellii rubiginosus) the frequency and 
amplitude of an acoustic signal are represented in the coordinates parallel to the 
surface of the Doppler-shifted-CF (constant frequency) processing area of the prima- 
ry auditory cortex. In this area all cortical neurons studied were excited by con- 
tralateral stimuli, and almost all of them were either excited or inhibited by ipsilater- 
al stimuli. These are called E-E (ipsilateral and contralateral excitatory) and I-E 
(ipsilateral inhibitory and contralateral excitatory) neurons, respectively. The I-E 
neurons are directionally sensitive, while the E-E neurons are not. The E-E neurons 
are equally sensitive to echoes between 30? contralateral and 30? ipsilateral. Of the 
electrode penetrations orthogonal to the Doppler-shifted-CF processing area, 57 
percent were characterized by either E-E or I-E neurons. Thus, there are at least two 
types of binaural columns: E-E columns, mainly located in a ventral part of the 
Doppler-shifted-CF processing area, where neurons are tuned to weak echoes; and I- 
E columns, mainly distributed in a dorsal part, where neurons are tuned to moderate 
to intense echoes. Therefore, neurons tuned to weaker echoes integrate or even mul- 
tiply faint signals from both ears for effective detection of a distant small target, 
while neurons tuned to moderate to intense echoes are suited for processing direc- 
tional information and are stimulated when a bat approaches a target at short range. 
The Doppler-shifted-CF processing area may be considered to consist of two func- 
tional subdivisions. 
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