
tions of dopamine in the contact zone of 
the ventral region of the median emi- 
nence, not directly associated with 
GnRH terminals, suggests that dopamine 
is available for direct release into portal 
blood to influence the anterior pituitary 
gland. A recent report (10) has shown 
high concentrations of dopamine in por- 
tal blood during different stages of the es- 
trous cycle, which may support the idea 
that dopamine influences the release of 
prolactin from the anterior pituitary 
gland (11). It is also possible that dopa- 
mine in these regions of the median emi- 
nence may be involved directly in the 
regulation of other hypothalamic releas- 
ing hormones. 

Thus, the correlative fluorescence-im- 
munocytochemical technique provides 
for the simultaneous demonstration of 
monoamines and GnRH within the same 
tissue block and potentially offers a 
means for examining transmitter-hor- 
mone interactions microscopically at a 
given point in time. These data support 
the concept that dopamine may affect the 
release of both hypothalamic GnRH and 
anterior pituitary hormones. This tech- 
nique may help to elucidate the role of 
neurotransmitters and neuropeptides in 
brain function by allowing the examina- 
tion of simultaneous alterations in neu- 
ronal peptides and transmitters during 
different functional stages. 
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Behavior and Phylogeny: 
Constriction in Ancient and Modern Snakes 

Abstract. Comparative analyses of behavior have an underappreciated potential 
for revealing the role of ethoecologicalfactors in the origins of higher taxa. Twenty- 
seven species (13 genera) in the advancedfamily Colubridae exhibited 19 patterns of 
coil application; one or two patterns were usually consistent within a genus. Forty- 
eight species (26 genera) in the primitive families Acrochordidae, Aniliidae, Boidae, 
and Xenopeltidae usually used a single pattern, despite differences in age, size, 
shape, habitat, and diet. This implies the shared retention of an action pattern used 
by their common ancestor no later than the early Paleocene. Constriction must have 
been used as a prey-killing tactic very early in the history of snakes and might have 
been a behavioral "key innovation" in the evolution of their unusual jaw mechanism. 
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Three methods have been used to 
study the evolutionary history of behav- 
ior: structural correlates in extinct taxa, 
such as the head ornaments of some di- 
nosaurs and the surface relief of cranial 
endocasts (1); fossil trackways and other 
artifacts (2); and comparative analyses of 
extant forms (3). Rigorous studies of the 
third type are infrequent, perhaps be- 
cause of recent skepticism regarding be- 
havioral homologies and because it is dif- 
ficult to obtain large enough samples of 
taxa to be informative (4). However, 
comparisons across taxa can have im- 
portant consequences for evolutionary 
biology. Given a fossil record of separate 
lineages in a group, an estimate of the 
minimum age of the behavior can be ob- 
tained. The behavior can then be corre- 
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lated with morphology and paleoecology 
to suggest selective factors in the adap- 
tive radiation of the group. We now re- 
port the modal action patterns used for 
constricting prey by 75 species of snakes 
in five families (6-8). We also specify an 
operational rationale for evaluating the 
origins of similar behavior in different 
species. Our results contribute to an un- 
derstanding of ethoecological aspects of 
the origin of a highly unusual and wide- 
spread group of vertebrates and thus il- 
lustrate an underappreciated potential 
for comparative studies of animal behav- 
ior. 

Constriction is a behavior pattern in 
which prey is immobilized by pressure 
exerted from two or more points on a 
snake's body (9, 10). Each portion of the 

lated with morphology and paleoecology 
to suggest selective factors in the adap- 
tive radiation of the group. We now re- 
port the modal action patterns used for 
constricting prey by 75 species of snakes 
in five families (6-8). We also specify an 
operational rationale for evaluating the 
origins of similar behavior in different 
species. Our results contribute to an un- 
derstanding of ethoecological aspects of 
the origin of a highly unusual and wide- 
spread group of vertebrates and thus il- 
lustrate an underappreciated potential 
for comparative studies of animal behav- 
ior. 

Constriction is a behavior pattern in 
which prey is immobilized by pressure 
exerted from two or more points on a 
snake's body (9, 10). Each portion of the 

Fig. 1. Constricting coils in snakes. (A) Bahaman dwarf boa, Tropidophis canus (Boidae), show- 
ing an anterior, horizontal coil with an initial twist in the first loop. Length of the snake, - 22 
cm. The prey is a lizard (Anolis carolinensis). (B) North American corn snake, Elaphe guttata 
(Colubridae), showing an anterior, vertical coil without an initial twist. Length, - 40 cm. The 
prey is a laboratory mouse. 
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body that encircles a prey item once is 
termed a loop, and all of the loops ap- 
plied at one time form a coil. Alternative 
states of four characters were used to de- 
scribe coil application patterns (11). 

1) Application movement: (i) in wind- 
ing, the prey was seized and turned 
about its long axis by the snake, so that 
loops were applied like rope on a wind- 
lass (12); (ii) in wrapping, prey was 
seized in the jaws, pinned to the sub- 
strate, and one to several loops were 
placed over, under, and around it; and 
(iii) both winding and wrapping were 
sometimes used during a single coil ap- 
plication. 

2) Initial twist: (i) if a twist was pres- 
ent in the snake's body as the first loop 
was wrapped or wound, the snake's bel- 
ly faced its head or against the prey (Fig. 
1A); (ii) if a twist was not present, the 
snake's belly faced away from its head 
(Fig. 1B); and (iii) occasionally both 
states occurred in different loops of a 
single coil. 

3) Coil composition: (i) the anterior, 
(ii) the posterior, or (iii) both parts of the 
snake were used. 

4) The long axis of the coil was usual- 
ly approximately either (i) horizontal, (ii) 
vertical, or (iii) at an angle with respect 
to the substrate; combinations of these 
states sometimes occurred during a 
single coil application. This character 
proved to be more variable than the oth- 
ers and was not used for initially defining 
the patterns. 

Twenty-seven species of colubrids ex- 
hibited intergeneric, interspecific, and in 
some cases individual variability in coil 
application movements (Table 1). Each 
character state was observed in more 
than one species. Nineteen of 27 possible 
state combinations for the first three 
characters were seen, and one or two 
such patterns were usually consistent 
within a genus (13, 14). In contrast, 45 
species of boids wound anterior, usually 
horizontal coils with an initial twist 
(Table 1) (15). This was confirmed for 40 
of these species on flat or irregular sub- 
strates, seven species striking from ele- 
vated beams, and five species striking in 
water. The prey were usually rodents, 
but we also observed certain boids con- 
strict birds, lizards, and frogs (16). A 
photograph of a Boa constrictor con- 
stricting a coati (Nasua narica) in Costa 
Rica demonstrates these states in a free- 
living snake (17). One Acrochordusjava- 
nicus (Acrochordidae), one Xenopeltis 
unicolor (Xenopeltidae), and two Cy- 
lindrophis rufus (Aniliidae) also immobi- 
lized prey by winding anterior, horizon- 
tal coils with an initial twist. 

There are four possible origins of simi- 
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Table 1. Constricting behavior in snakes. 

Acro- Anili- Colu- Xeno- Number chordidae idae Bodae bridae peltidae 

Genera 
In family 1 3 24 300 1 
Known to constrict 1 1 23 48 1 
Observed 1 1 23 13 1 

Species 
In family 3 - 10 79 - 1400 1 
Known not to constrict 0 ? 0 Many 0 
Known to constrict 1 2 51 76 1 
Observed 1 1 45 27 1 

Individuals 1 2 116 60 1 
Observations 1 3 346 227 2 

lar phenotypes in different taxa: (i) 
chance; (ii) similar experiential factors in 
the lives of individual animals; (iii) con- 
vergence, in which similar traits are 
evolved independently in response to 
similar ecological or morphological con- 
straints; and (iv) phylogenetic continuity 
and the presence of the trait in a common 
ancestor. It is difficult to directly test for 
the last possibility without a continuous 
fossil record, but the first three can be 
falsified (18). Chance becomes rapidly 
less likely as more species are involved; 
similar behaviors in unrelated species 
with similar selective constraints can be 
attributed to convergence; the effects of 
experience can be evaluated within and 
between individuals; and similar behav- 
iors in related species that vary in ecol- 
ogy, individual experience, and mor- 
phology can be attributed to common an- 
cestry. 

The diversity of prey types and sub- 
strates we used and the presence of the 
adult pattern in newborn snakes (19) re- 
fute individual experience as an exclu- 
sive explanation of similar coil appli- 
cation behavior in boids. Convergence is 
also unlikely because our sample includ- 

Recent T B E P L X An Ac 
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Eocene 
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Fig. 2. Evolutionary history of primitive con- 
stricting snakes (30). Dark bars indicate 
known age of separate lineages, on the basis 
of the fossil record; wavy lines indicate pre- 
sumed relationships. Taxa: T, Tropido- 
phiinae; B, Boinae; E, Erycinae; P, Pyth- 
oninae; L, Loxoceminae; X, Xenopeltinae; 
An, Aniliidae; and Ac, Acrochordidae. Dini- 
lysia is the oldest well-known fossil snake ge- 
nus. 

ed 23 of the 24 genera of boids and en- 
compassed the substantial ecological and 
morphological variation in this family 
(16). For example, we observed Exiliboa 
placata, a 30-cm terrestrial cloud-forest 
boa that eats amphibians; Eryx johnii, a 
75-cm fossorial desert boa that eats liz- 
ards and rodents; Corallus caninus, a 
1.5-m tree boa that eats birds; and Eu- 
nectes murinus, the semiaquatic ana- 
conda, which reaches a length greater 
than 8 m and feeds on a variety of large 
vertebrates. Although most boids are rel- 
atively stout-bodied, our sample includ- 
ed the extremely slender Hispaniolan 
vine boa, Epicrates gracilis. It is also 
noteworthy that we observed the Ma- 
dagascan (Acrantophis, Sanzinia) and 
South Pacific island (Candoia) boas, per- 
haps relicts of an early Gondwanaland 
radiation (20). Since chance, individual 
experience, and convergence are highly 
unlikely explanations for the coil appli- 
cation behavior of extant boids, we con- 
cluded that the similarity probably re- 
flects the shared retention of an action 
pattern used by their common ancestor. 

Fossils of the boid subfamilies Boinae, 
Erycinae, Pythoninae, and Tropido- 
phiinae indicate some divergence in the 
family at least as early as the Paleocene, 
and probably in the Cretaceous [figure 2 
of (8)]. Our sample included these sub- 
families (as well as the even more primi- 
tive Loxoceminae, which lacks a fossil 
record), so ancestral boids probably con- 
stricted prey in the Paleocene and per- 
haps much earlier. Cylindrophis and 
Xenopeltis are generally considered sur- 
vivors of proboid stock (8), and Acro- 
chordus is probably the most primitive 
living snake genus (21). If our observa- 
tions accurately indicate the behavior of 
these genera, this method of coil appli- 
cation might date back to the earliest 
snakes (21, 22). 

Functional innovations are often 
thought to provide a new selective ad- 
vantage for subsequent structural 
changes during the origins of adaptive ra- 
diations (23), but there is rarely evidence 
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for the presence or timing of such shifts. 
As ancestral snakes evolved increased 
gape, tactics for overpowering prey too 
strong to have been eaten while it 
struggled would have become advanta- 
geous (24). It follows that constriction 
might have been a behavioral pro- 
toadaptation that both permitted and fa- 
vored evolutionary loss of the mandibu- 
lar symphysis and development of a 
highly movable (streptostylic) quadrate 
bone, the key modifications for ingesting 
large prey items (24). However, Fraz- 
zetta (25) suggested that the earliest well- 
known snake, Dinilysia patagonica of 
the Upper Cretaceous, was not a con- 
strictor. Dinilysia is usually placed with 
acrochordids, aniliids, boids, bolyerids, 
uropeltids, and xenopeltids in the super- 
family Booidea (26). Like aniliids (its 
closest living relatives), the stout jaws of 
D. patagonica seem well suited for 
crushing prey, and the aniliids that Fraz- 
zetta observed (species not stated) did 
not constrict. Furthermore, birds and 
mammals, thought to be especially vul- 
nerable to constriction because of high 
metabolic rates, were not yet widespread 
in the Cretaceous. We know of nothing 
in the morphology of D. patagonica that 
would preclude constriction (27), and 
Frazzetta's arguments are weakened by 
the fact that many Recent snakes (in- 
cluding some boids and aniliids) use con- 
striction to subdue ectotherms (28). Our 
study provides evidence for the great an- 
tiquity of constriction in boids and prob- 
ably the entire superfamily Booidea. We 
therefore suggest that D. patagonica 
probably did constrict prey and that this 
behavior was an ethological "key in- 
novation" (29) in the early evolution of 
snakes. 

A recent review concluded that there 
are no known behavioral homologies 
above the family level in vertebrates (5). 
We have demonstrated that a modal ac- 
tion pattern is probably homologous 
among at least four families of snakes. 
Broader issues are indicated. What kinds 
of movements are stable over long peri- 
ods of evolutionary time? What kinds 
change rapidly, and why? How are the 
rates and directions of change con- 
strained by other factors? Rigorous com- 
parative studies might provide answers 
to these and other questions regarding 
the evolution of behavior and the role of 
behavior in evolution. 
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Development of Sensitivity to Pictorial Depth 

Abstract. Sensitivity to static pictorial information for depth develops between 22 
and 26 weeks of age. When conflicting binocular and surface-texture information 
was minimized, 26- to 30-week-old infants directed their reaching to the apparently 
closer side of a photograph of a window rotated in depth. Younger infants, from 20 to 
22 weeks of age, did not direct their reaching to the pictorially nearer side of the 
display but did reach with a high degree of directionality when presented with a real 
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In the 15th century, Leonardo da Vin- 
ci described a set of techniques for repre- 
senting the third dimension on a flat can- 
vas. He pointed out that light, shadow, 
and linear, detail, and aerial perspective 
could specify distance in a painting, but 
that other depth information, such as 
movement and binocular parallax, could 
not be used on a flat surface. More re- 
cently, psychologists have described ad- 
ditional monocular cues for depth, in- 
cluding relative size, interposition, and 
texture gradients (1). Olson and Boswell 
have demonstrated that 2-year-old chil- 
dren will respond to pictorial depth as 
specified by interposition and relative 
height in the picture plane but not to the 
depth information provided by relative 
size (2). Although earlier research has 
suggested that young infants are sensi- 
tive to binocular and kinetic information 
for depth, there are reports that infants 
younger than 16 weeks of age are in- 
sensitive to pictorial depth (3). Our study 
provides evidence that when conflicting 
binocular and surface information is min- 
imized, infants from 26 to 30 weeks of 
age are sensitive to pictorial depth; 
younger infants from 20 to 22 weeks of 
age do not show such sensitivity. 

The pictorial display used in these ex- 
periments was a fronto-parallel Ames 
trapezoidal window (4), which creates an 
effective illusion under monocular view- 
ing of a rectangular window oriented at 
45? to the viewer, such that one side ap- 
pears closer than the other. We hypothe- 
sized that if an infant were sensitive to 
the pictorial information for depth speci- 
fied in the trapezoidal window, we would 
expect his or her reaching to be directed 
to the apparently nearer side. 

Other researchers have reported that 
an infant will reach more frequently to a 
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near rather than a far object (5). In a pre- 
liminary experiment, we determined that 
infants would direct their reaches with 
enough accuracy to exhibit sensitivity to 
the differential distances of the two sides 
of a slanted surface. Thirteen 26- to 30- 
week-old infants were presented with a 
real rectangular window rotated 45? 
about a vertical axis, with either the left 
or the right side of the window brought 
nearer to the infant. Presentations were 
randomized as to which side was closer. 
Direction of reaching was scored from a 
videotape recording. The infants' reach- 
es were directed toward the closer side 
of the window on 75 percent of the trials, 
and toward the farther side on only 6 per- 
cent of the trials. The remaining reaches 
were directed either to the middle or si- 
multaneously to both sides of the dis- 
play. 

For experiment 1, the trapezoidal win- 
dow was created by photographing from 
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21 cm a real rectangular window rotated 
45? about the vertical axis (Fig. 1A). The 
resulting black-and-white matte photo- 
graph was enlarged during printing to 
produce a retinal image that was the 
same size as that projected by the real 
window when viewed from 21 cm. The 
photograph was glued to a metal sheet 
cut to match the shape of the pictured 
object, allowing the infant to see through 
the internal spaces of the display and 
thereby minimizing the pictorial surface 
texture. The larger and apparently near- 
er side was actually 25.5 cm in height, 
and the smaller side, 14 cm in height. 
The width of the display was 20.3 cm. 

A control display, lacking a pictorial 
surface, was created to test for the possi- 
bility that reaching might be determined 
by the unequal size of the sides of the 
trapezoidal display (Fig. 1B). This dis- 
play was produced by photographing the 
real rectangular window in the fronto- 
parallel plane. Two prints were made, 
one matching the vertical dimensions of 
the small side of the trapezoidal print, 
and one matching the larger side. The 
two prints were combined, and the shape 
was cut from metal. Again, the internal 
spaces were removed. The surface was 
painted gray to match approximately the 
overall reflectance of the trapezoidal dis- 
play. The control display therefore ap- 
peared to be a single object, with one 
side smaller than the other side, but with 
no information that the sides were at dif- 
ferent distances. 

Fifty infants from 26 to 30 weeks of 
age served as subjects; half were pre- 
sented with the trapezoidal display, and 
half with the control display. To elimi- 
nate binocular information, each infant 
wore an eye patch over the left eye or a 
small pair of eyeglass frames with the left 
eye occluded. The infant sat upright in a 
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Fig. 1. Display windows, mounted on rods 3 feet (0.914 m) in front of dark blue cloth back- 
ground. (A) Fronto-parallel Ames trapezoidal window. (B) Control display. Abbreviations: L, 
large side; M, middle area; and S, small side. 
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