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to the learning-set task. 

Primates-both human and non- 
human-depend on vision for most of 
their information about the environment. 
This is surely one of the reasons experi- 
mental psychologists using animals as 
subjects have made such extensive use 
of visual discrimination tasks in studying 
learning and memory (1). One might ex- 
pect eye movements to play an impor- 
tant role in the discrimination process, 
but little is known about them in this re- 
gard because of the technical problems 
involved in their measurement. During 
the past few years, we have been mea- 
suring the changes in eye movements of 
monkeys during discrimination learning, 
using a computerized method that we de- 
veloped for the purpose. We now de- 
scribe such changes during the formation 
of discrimination learning sets. Learn- 
ing-set formation is of particular interest 
because of evidence suggesting that the 
mechanism involved in this kind of learn- 
ing (which has been variously referred to 
as "hypothesis," "strategy," or "con- 
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the final stages of training. Two animals 
persisted at a high level of scanning; the 
others scanned less throughout most of 
the training and, in addition, decreased 
the amount after reaching the peak, so 
that near the end of training, they were 
approaching minimum scanning (Fig. 1). 
Thus, learning-set formation seems to 
have a dramatic and persisting effect on 
this aspect of the visual behavior of some 
monkeys but not others (10). 

The early rise to a peak in the amount 
of scanning, also seen during the course 
of learning individual discrimination 
problems, might be expected to delineate 
a significant stage in the learning pro- 
cess, but what this might be is not clear 
yet. It is also unclear whether this type 
of visual activity is a necessary or impor- 
tant part of the discrimination-learning 
process. If it were, one might expect 
more frequent looking at the discrimina- 
tive stimuli to increase the probability of 
a correct choice response, but this does 
not seem to be the case. The probability 
of a correct response is greater after one 
scan than after no scans, but further in- 
creases in the amount of scanning not 
only do not increase the probability of a 
correct response but are accompanied by 
a decrease in that probability. For ex- 
ample, all animals showed their peak 
scanning during problems 21 through 60. 
During the precriterion trials of these 
problems, the percentages of correct re- 
sponses made by the group on those tri- 
als on which there were 0, 1, 2, 3, or 4 or 
more scans were, respectively, 69, 78, 
74, 69, and 70 [F (4,12) = 5.09, P < .05]. 
The outcome was essentially the same 
regardless of the stage of learning-set 
training or the level of performance with- 
in single problems (precriterion trials of 
problems versus the criterion trials). 
Paradoxically, then, trials in which there 
are a large number of fixations, though 
often occurring during periods of rapid 
learning of problems, are no more likely 
to end in a correct response than trials in 
which only a few fixations occur. This 
could mean that the large number of 
scans on presolution trials is simply a by- 
product of the learning process, not an 
essential part of it. Evidence from hu- 
man subjects suggests that the frequency 
of fixations is related to the memory of 
items fixated (11). Perhaps the amount of 
scanning on precriterion trials influenced 
memory of the patterns on later trials. 

Duration of an individual fixation on a 
stimulus pattern was another eye-move- 
ment variable measured. During learn- 
ing-set formation, all animals markedly 
increased the duration of the last visual 
fixation on a stimulus pattern during a 
24 MARCH 1978 

trial (Fig. 2). There was also an increase, 
although much less marked, in the dura- 
tion of fixations preceding the last one. 
The durations of both types of fixations 
remained high for all the animals 
throughout the prolonged period of train- 
ing and so appear to have reached 
asymptote. We separate the two types of 
fixations because the last fixation on a 
discriminative stimulus is typically much 
longer than preceding ones, as was the 
case here (12). This is so in part because 
the choice response occurs during the 
last fixation; the duration of this fixation 

1.5 

1.3 

o 
u 

a) 

07 

0.7 

0.5 

o 

thus reflects the time necessary to carry 
out this response. But the duration of the 
last fixation also reflects cognitive pro- 
cessing stages immediately preceding the 
choice response (7). The increased dura- 
tion of the last fixation during learning- 
set formation either does not occur dur- 
ing the learning of a single problem of the 
type used here or is transient (13). 
Hence, the results for last fixations are 
compatible with the hypothesis that 
learning-set formation involves changes 
in cognitive processes (perhaps reflect- 
ing hypothesis or strategy formation) not 
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Fig. 1. Mean number of scans per trial (left ordinate) as a function of practice. All four animals 
are represented by the curve labeled Scans; the two animals that showed high levels of scanning 
(HS) and the two animals that showed low levels of scanning (LS) are represented separately. 
Also shown are the mean trials to criterion (TTC) per problem as a function of practice. The last 
block consists of 35 problems, rather than 50. 

Fig. 2. Mean latency of the 
choice response, mean dura- 
tion of the last fixation on dot 
patterns during a trial, and 
mean duration of the fixations 
on the dot patterns that pre- 
ceded the last one as a func- 
tion of practice. Latency rep- 
resents the time from the onset 
of the two dot patterns to the 
occurrence of the choice re- 
sponse. Latency is greatly in- 
fluenced by the number of 
scans, and so is not related in a 
simple way to duration of fixa- 
tions. Also shown is the TTC 
curve from Fig. 1. 
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seen during the learning of individual dis- 
crimination problems. 

The animals do not seem to fall into 
disparate groups with respect to the du- 
ration of fixation as they do with respect 
to amount of scanning. For example, 
during the last 100 problems, when the 
difference between the high- and low- 
scanning animals was greatest (Fig. 1), 
one of the former and one of the latter 
were consistently the two highest-rank- 
ing animals in terms of average duration 
of the last fixation. 

In addition to the permanent changes 
in some characteristics of eye move- 
ments accompanying learning-set forma- 
tion, we were interested in determining 
whether learning-set formation changes 
the way an animal looks at the stimulus 
patterns even after the learning-set task 
is discontinued. Therefore, after each of 
the animals had completed the series of 
discrimination problems, the first prob- 
lem of the series was repeated daily until 
all measures of eye movements had 
reached a stable level for five con- 
secutive days (which took 3,500 to 
10,000 trials). 

Termination of the learning-set task 
resulted in a decrease in both the amount 
of scanning and the duration of fixations 
(Table 1), although these measures do 
not appear to return to the original levels 
in all cases. The amount of scanning by 
the two high-scanning animals remained 
well above the original levels. Further- 
more, the duration of fixations preceding 
the last remained higher for all four ani- 
mals after learning-set training than it 
was originally (Table 1, rows 1 and 3) 
[means of the log-transformed values: 
t (3) = 4.20, P < .05]. This was not the 
case for the duration of the last fixation, 
with two of the animals showing some- 
what shorter durations than they did 
originally. The fact that the duration of 
the last fixation did not remain signifi- 
cantly above the original level is consist- 
ent with the hypothesis that this fixation 
reflects cognitive processing specific to 
the learning-set task. Fixations preced- 
ing the last may have remained higher 
because they reflect changes in one or 
more of the initial stages (encoding, cate- 
gorization, and so forth) of the visual 
processing of the patterns, which do not 
influence the last fixation. 

There are, then, marked changes in 
eye movements during learning-set for- 

mation that differ at least quantitatively 
and probably also qualitatively from 
those seen during learning of individual 
discrimination problems. These changes 
appear to be permanent both in the sense 
that they persist throughout prolonged 
training on the learning-set task and in 
the sense that, in some instances, they 
persist after the learning-set task is dis- 
continued. 

This study is one of many concerned 
with visual "observing responses" (14). 
Nearly all of these studies have in- 
directly measured observing responses, 
and have either confounded frequency 
(scanning, number of fixations, and so 
forth) and duration of observing or have 
not included the latter. A complete un- 
derstanding of observing behavior and 
its role in the discriminative process will 
require that at least as much attention be 
given to duration of observing as to its 
frequency. 
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