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The AAAS-Newcomb Cleveland Prize is awarded annually to 

the author of an outstanding paper published in Science from Sep- 
tember through August. The competition year starts with the 2 
September 1977 issue of Science and ends with that of 25 August 
1978. The value of the prize is $5000; the winner also receives a 
bronze medal. 

Reports and Articles that include original research data, 
theories, or syntheses and are fundamental contributions to basic 
knowledge or technical achievements of far-reaching consequence 
are eligible for consideration for the prize. The paper must be a 
first-time publication of the author's own work. Reference to 
pertinent earlier work by the author may be included to give per- 
spective. 

Throughout the year, readers are invited to nominate papers ap- 

pearing in the Reports or Articles section. Nominations must be 
typed, and the following information provided: the title of the pa- 
per, issue in which it was published, author's name, and a brief 
statement of justification for nomination. Nominations should be 
submitted to AAAS-Newcomb Cleveland Prize, AAAS, 1515 
Massachusetts Avenue, NW, Washington, D.C. 20005. Final 
selection will rest with a panel of distinguished scientists ap- 
pointed by the Board of Directors. 

The award will be presented at a session of the annual meeting at 
which the winner will be invited to present a paper reviewing the field 
related to the prizewinning research. The review paper will subse- 
quently be published in Science. In cases of multiple authorship, 
the prize will be divided equally between or among the authors; 
the senior author will be invited to speak at the annual meeting. 

Reports 

Spectral Analyses of High-Frequency Pn and Sn Phases 

Observed at Great Distances in the Western Pacific 

Abstract. Both Pn and Sn phases recorded at distances greater than 3000 kilome- 
ters in the western Pacific have substantial amounts of energy at high frequencies, in 
some instances as high as 12 hertz for Pn and 15 hertz for Sn. A comparison of Pn and 
Sn spectra reveals generally higher energy levels and higher proportions of high- 

frequency to low-frequency energy for Sn than for P,. Estimates of the effective quali- 
ty factor, Q, indicate that the efficiency of S, propagation may be two or three times 
that of P,. First arrivals of P, and Sn have apparent velocities in agreement with 
values for the uppermost mantle, whereas maximum-energy arrivals have apparent 
velocities in agreement with values for the lower crust. 

In earlier studies of high-frequency Pn 
and Sn phases in the Pacific, Pn and Sn 
have been observed to distances in ex- 
cess of 30? with frequencies as high as 6 
Hz (1-3). Although detailed information 
on the spectra of the guided phases could 
be of great value in determining the effi- 
ciency of the wave guide and the mode of 
Pn and Sn propagation, such information 
was not available because of the record- 
ing medium used (paper recordings made 
at a rate of 1 mm/sec). We discuss here 
spectral studies of recently obtained tape 
recordings of Pn and Sn in the western 
Pacific. Figure 1 shows the epicenters of 
six principal shocks recorded by an 
ocean-bottom hydrophone array near 
Wake Island during February and March 
1976. Four of the events had travel paths 
to Wake Island that were under the deep 
Northwestern Pacific Basin, whereas the 
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other two events had travel paths under 
the shallower Ontong Java Plateau. Data 
from each of these areas will be dis- 
cussed separately. 

Spectrograms of the Pn and Sn phases 
for events having travel paths under the 
Northwestern Pacific Basin are shown in 
Fig. 2, a-d. Frequencies well in excess of 
6 Hz are present in many of the Pn and Sn 
phases-with frequencies perhaps as 
high as 12 Hz for Pn and 15 Hz for Sn (4). 
One qualitative indication that the Sn 
wave guide may be more efficient than 
the Pn wave guide is the increasing 
amount of high-frequency energy in the 
Sn wave train relative to that in the Pn 
wave train as distance increases (5); an- 
other is the increasing overall strength of 
the Sn signal relative to that of the Pn sig- 
nal as distance increases. A physical pa- 
rameter often used to quantitatively 

measure a medium's efficiency in trans- 
mitting energy is the quality factor, Q. 
Although Q may be expressed mathe- 
matically in a variety of ways, for the 
purposes of this discussion it is best ap- 
proximated by -20rrd/2.3vs, where d is 
the epicentral distance, v is the velocity 
of the phase, and s is the slope (in deci- 
bels per hertz) of the ratio of the spec- 
trum of P, or Sn to that of the T-phase 
from the same earthquake (6). Efficient 
wave guides will therefore have high Q 
values, whereas inefficient wave guides 
will have low Q values. Using the spec- 
tral ratios shown in Fig. 3 and similar 
plots for the Kuril Islands earthquake, 
we computed Q values for Pn and Sn. 
Values for both Pn and Sn are high, with 
the Q for Sn phases being much higher 
than the Q for Pn phases [Q values for 
Pn and Sn are 3700 + 200 (7) and 
8500 ? 600, respectively, for the Hok- 
kaido earthquake and 8400 + 1300 and 
19,100 - 3700, respectively, for the Ku- 
ril Islands earthquake (8)]. No computa- 
tions of Q were made for the two Mari- 
anas Islands events since the method is 
dependent on the recording of the T- 
phase (6) and these earthquakes did not 
generate an observable T-phase at Wake 
Island. For one of these events, amounts 
of high-frequency energy are larger in 
the Sn spectrum than in the Pn spectrum; 
for the other event, amounts of high-fre- 
quency energy are about the same in the 
Pn and Sn spectra. Because of the lower 
velocity of Sn, these observations also 
indicate that Sn propagation is more effi- 
cient than Pn propagation. 

Other noteworthy aspects of the spec- 
trograms (Fig. 2) are the duration of the 
wave trains and the arrival times of peak 
energies for Pn and Sn. The Pn wave train 
appears to extend to the onset of the Sn 
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Fig. 1. Epicenters of six principal earthquakes 
recorded on the reactivated Wake Island hy- 
drophone array. 

wave train; the Sn wave train appears to 
have a much shorter duration. Some of 
the energy appearing after the onset of 
P, and before the onset of S, could be 
the result of the conversion of Pn to Sn, 
or of Sn to Pn. Although the travel times 
of the first-arriving Pn and Sn phases are 
in agreement with the times observed in 
earlier studies (1-3), maximum ampli- 
tudes occur well after the onsets of Pn 
and Sn (Fig. 4). These peaks, which ap- 
pear farther behind the first arrivals of Pn 
and Sn as distances increase, travel with 
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velocities (about 7.6 and 4.5 km/sec for 
Pn and Sn, respectively) comparable to 
basal crustal propagation rates (9) rather 
than with the Moho or mantle velocities 
of the first-arriving Pn and Sn phases [8.3 
or 7.8 and 4.8 km/sec for Pn and Sn, re- 
spectively (1-3)]. Thus, it appears that 
an appreciable portion of Pn and Sn ener- 
gy may propagate within the lower por- 
tion of the oceanic crust. 

Four earthquakes were recorded at 
Wake Island that have travel paths 
across the Ontong Java Plateau as well 
as across portions of the Northwestern 
Pacific Basin (Fig. 1). The epicenter of 
one event was near New Britain; epicen- 
ters of the other three earthquakes were 
at virtually identical locations in the 
Solomon Islands. Spectrograms for the 
New Britian earthquake and for the two 
smaller Solomon Islands earthquakes are 
similar to the spectrogram for the largest 
Solomon Islands event, which is shown 
in Fig. 2e. The most obvious difference 
between this spectrogram and those of 
events having travel paths across the 
Northwestern Pacific Basin is that no Sn 
is observed for the Solomon Islands 
earthquake. Similar findings have been 
reported earlier (10). Recent studies in- 
dicate that Sn is fairly well propagated 
for travel paths entirely within the On- 
tong Java Plateau, but Sn appears to be 
severely attenuated, or filtered, as it 
moves from the shallow Ontong Java 
Plateau to the deep Northwestern Pacific 
Basin. [Some of the events having good 
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Fig. 3. Spectral ratios for P-T (closed circles) 
and Sn-T (open circles) for the Hokkaido 
earthquake (Fig. 2d). Because of the great ef- 
ficiency of T-phase propagation in the ocean's 
SOFAR channel and because of the proximity 
of T-phase source locations to earthquake epi- 
centers, the T-phase spectrum is considered 
to be similar to the source spectrum (6). If we 
compare the slopes of the Pn-T and Sn-T 
spectra (-3.02 ? 0.19 and -2.21 ? 0.17, re- 
spectively), Sn-T obviously has a higher pro- 
portion of high-frequency to low-frequency 
energy. This finding suggests that: the propa- 
gation of Sn is much more efficient than the 
propagation of Pn. 

Pn and Sn propagation to Ponape, on the 
northernmost edge of the Ontong Java 
Plateau, have epicenters, magnitudes, 
and focal depths that are nearly identical 
to those of the Solomon Islands and New 
Britain earthquakes, which did not pro- 
duce a recordable Sn at Wake Island 
(11).] However, Pn is not similarly af- 
fected. Strong Pn and Sn phases have 
been observed (3) for travel paths to Po- 
nape from the other direction (that is, 
from earthquakes in the Marianas Is- 
lands, Japan, and the Kuril Islands). 

These observations reveal several 
spectral differences between the Solo- 
mon Islands earthquake (Fig. 2e) and 
those earthquakes having travel paths 
across the Northwestern Pacific Basin 
(Fig. 2, a-d). Both Pn and Sn are well 
propagated across the Northwestern Pa- 
cific Basin and across the Ontong Java 
Plateau, Pn is well propagated in both di- 
rections across the transition zone be- 
tween the Ontong Java Plateau and 
Northwestern Pacific Basin, and Sn ap- 
pears to be severely attenuated as it trav- 
els across the boundary between the On- 
tong Java Plateau and the Northwestern 
Pacific Basin. Another apparent dif- 
ference between the spectrograms for 
the Solomon Islands earthquake and 
those: of events having travel paths 
across the Northwestern Pacific Basin is 
that a normal, mantle-refracted P (direct 
arrival) is observed for the Solomon Is- 
lands event. Although normal, mantle- 
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refracted P phases for travel paths under 
the Northwestern Pacific Basin have 
been observed on more conventional (1- 
Hz) island seismic stations, no such 
phases are obvious for the Marianas Is- 
lands, Hokkaido, or Kuril Islands events 
recorded in this study, probably because 
of differing sensitivities of the conven- 
tional seismographs and hydrophones at 
low frequencies (Z 2 Hz). The absence 
of P on the Wake Island hydrophone for 
travel paths under the Northwestern Pa- 
cific Basin and the presence of P on the 
Wake Island hydrophone for travel paths 
under the Ontong Java Plateau seem to 
suggest substantial differences in the 
mantle underlying these two regions. 
Additional observations are needed to 
substantiate these suggestions. A third 
difference in the spectra is in the charac- 
ter of the Pn arrival. Although the Hok- 
kaido and Solomon Islands earthquakes 
are roughly comparable in terms of epi- 
central distance, magnitude, and focal 
depth, the Pn wave train for the Hok- 
kaido event is much longer than the 
wave train for the Solomon Islands 
event. This short duration of Pn for the 
Solomon Islands earthquake, and the 
corresponding absence of Sn, further 
suggest that the long Pn wave trains (Fig. 
2) may be a result of conversion of Pn to 
S5, or of Sn to Pn. 

Using the T-phase method, we have 
estimated Q for P and Pn for the Solo- 
mon Islands and New Britain earth- 
quakes. Values for the Solomon Islands 
earthquakes average 3100 ? 1100 and 
5200 ? 900 for P and Pn, respectively; 
similar values for the New Britain event 
are 1100 ? 200 and 2300 ? 300. The Q 
value of 5200 is roughly comparable to 
values found for the Kuril Islands (8400) 
and Hokkaido (3700) earthquakes, 
whereas the Q value of 2300 is low. The 
Q values for P (3100 and 1100) are some- 
what higher than usual for normal 
mantle-refracted P phases calculated by 
other methods (generally around 1000), a 
possible indication that the T-phase 
spectrum is already somewhat attenu- 
ated when it reaches the ocean. 

Many observations and conclusions of 
earlier studies of Pn and S,, propagation 
in the western Pacific have been con- 
firmed and complemented by this inves- 
tigation. The most important observa- 
tions are the high frequencies of the Pn 
and Sn wave trains at great distances and 
the fact that Sn propagation is much 
more efficient than Pn. The remarkably 
high frequencies of Sn at great distances 
and the fact that the efficiency of Sn 
propagation is unquestionably greater 
than the efficiency of Pn propagation 
defies conventional thinking. Selective 
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Fig. 4. Digitally rectified and compressed 
plots of Pn and Sn for the earthquakes shown 
in Fig. 2. The Pn and Sn arrivals have their 
maximum amplitudes at apparent velocities 
(approximately 7.6 and 4.5 km/sec for Pn and 
Sn, respectively) in agreement with values for 
the lower crust. 

leakage of low-frequency energy from 
the Pn, Sn wave guide, as suggested by 
Fuchs and Schulz (12), would tend to 
raise the calculated Q. Greater leakage 
for Sn than for Pn would be required to 
explain the observations. For a given Q, 
this leakage would tend to reduce all sig- 
nal amplitudes. Consideration of abso- 
lute amplitudes suggests that this effect 
is not strong in the frequency band stud- 
ied (about 2 to 15 Hz). 
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