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Abstract. The highly organized array of intramembranous particles, the ciliary 
plaque, varies from the wild type in size and organization in two stocks of the Para- 
mecium behavioral mutant, paranoiac. In one of these stocks, the alteration is dra- 
matic. 
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The behavior of paramecia is governed 
by the membrane potential. When the 
membrane is at rest, the cilia beat poste- 
riorly and the paramecia swim forward. 
When the membrane becomes depolar- 
ized, the cilia beat in a reversed direction 
(ciliary reversal) and the cell backs up 
(1). Recent experiments suggest that the 
ciliary membranes are the specific com- 
ponents which control the direction of 
ciliary beat because these membranes 
contain ion channels important in active 
depolarizations (2). A specific structure 
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prolonged backward swimming, as an 
overreaction to sodium. Mutations at 
any of five loci can result in the para- 
noiac behavior (4). This behavior is cor- 
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related with a prolonged membrane de- 
polarization and abnormally large K+ ef- 
flux and Na+ influx when the mutants 
encounter a high Na+ concentration (5). 
We have found alterations of plaque 
morphology in the two paranoiac stocks 
examined. In one stock (d4-578) the 
changes are dramatic. 

All stocks used were nearly isogenic 
and were derived from the wild stock 51, 
P. tetraurelia. The derived stocks were 
d4-578 (PaAl/PaA1), d4-90 (PaA/PaA) 
and d4-93 (bd/bd, behaviorally normal, 
body deformation mutation frequently 
used to mark genetic crosses). Standard 
growth conditions were used (6). Cells 

Fig. 1. Ciliary plaques of wild-type and para- 
noiac d4-578 cells of Paramecium. (a) Wild- 
type cilia regularly have plaques with three 
vertical columns and usually four to six hori- 
zontal rows. (b) Cilia from d4-578 cells char- 
acteristically have shorter, sometimes dis- 
organized plaques. (c) In the most extreme 
case cilia from d4-578 cells have no organized 
plaques although the necklace is clearly vis- 
ible. The scale line in (a) measures 100 nm; all 
figures at same magnification. 
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were fixed, washed, frozen, stored, and 
freeze-fractured, and the replicas were 
examined by conventional methods (7). 
Forty cilia from 22 to 24 cells each of d4- 
90, d4-578, and behaviorally normal 
stocks (51 and d4-93) were examined. To 
avoid bias, these samples included the 
first 40 somatic (nonoral) cilia we en- 
countered which had fractured to reveal 
the P (inner) fracture face 100 to 150 nm 
distal to the ciliary necklace. The neck- 
lace consists of two easily recognized 
bands of 10-nm particles located in the 
membrane just at the base of the cilium 
(3, 8). A necklace is clearly visible in Fig. 
Ic. 

Our observations on wild-type cilia 
confirm earlier reports (3, 8, 9). There 
are invariably three columns of particles 
per plaque and variable numbers of hori- 
zontal rows. For the 56 plaques on the 
40 cilia, the range of number of rows 
is three to seven, with a mean of 
4.84 ? 0.73 (? standard deviation) (Fig. 
2). The alignment of both rows and col- 
umns is regular with virtually no parti- 
cles out of line (Fig. la). 

The paranoiac mutant Al, stock d4- 
578, is strikingly different (Fig. lb). In 
the most extreme cases, mutant cilia 
have normal necklaces but no organized 
plaques at all (Fig. Ic). Of the 40 cilia ex- 
amined, 16 (40 percent) have no plaques. 
Such barren cilia were not observed in 
the two behaviorally normal stocks. 
Those cilia which do have plaques have 
fewer, smaller, and poorly organized 
ones (Figs. lb and 2). There are many 
misaligned particles and sometimes en- 
tire columns of particles are missing. 
Within a plaque, many of the points at 
which a particle is expected are smooth 
and cannot be distinguished from the 
background. The frequency of such 
points with missing particles is 0.009 in 
the wild type and 0.164 in this mutant. 
The deficiency of particles in organized 
arrays in this region is not compensated 
by an increase in randomly distributed 
particles. The observed abnormalities of 
cilia from log-phase cells do not dis- 
appear in cells which have been starved 
for 18 hours in nonnutritive salt solution. 

The paranoiac mutant d4-90, on which 
many of the electrophysiological and in- 
flux experiments have been performed, 
also has morphological deviations but to 
a lesser extent than d4-578. The number 
of rows per plaque field in d4-90 has a 
mean of 5.03, not significantly different 
from the wild type, but the range is from 
2 to 8 and the standard deviation of 1.07 
reflects a significantly different variance 
from that of the wild type. If one exam- 
ines only the completely visible plaque 

fields, one finds nearly a tenfold increase 
in the frequency of points within a 
plaque at which particles are missing in 
d4-90 (8.3 percent) as compared to wild 
type (0.9 percent). A 2 by 2 contingency 
X2 analysis shows that this increase is 
highly significant. Examination of the E 
fracture face reveals no marked increase 
in the number of particles adhering to 
that face, indicating the difference is not 
merely in the pattern of adhesion during 
fracture. Preliminary results show that 
paranoiacs with mutations at some of the 
gene loci other than PaA also show ab- 
normalities in plaque morphology. It 
seems likely that the plaques are related 
to some bioelectric functions and that 
their derangement is correlated with the 
paranoiac syndrome in Paramecium. 

Plaque morphology is slightly variable 
even in the wild type and is somewhat 
sensitive to the conditions under which 
the cells are cultured. Plattner (3) reports 
seeing wild-type cilia with necklaces and 
no plaques. Dute and Kung (10) confirm 
this observation. We have not observed 
this in wild-type cells but have not yet 
explored the full range of possible 
growth conditions and physiological 
states of these cells. We have found that 
the plaque morphology of stock d4-90 is 
rather variable from experiment to ex- 
periment, sometimes approaching a 
wild-type pattern and sometimes clearly 
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Fig. 2. Frequency of plaques having different 
numbers of rows of particles. Wild-type cells 
(51) have normal plaques with about five rows 
of particles. Paranoiacs (d4-578) have abnor- 
mal plaque fields, nearly half of which (27/56) 
are devoid of particles, that is, zero rows per 
field (11). Only plaques or plaque fields not 
obscured by shadow, fold, or fracture were 
tabulated. When there were few or no parti- 
cles, the fields defined by the proper distance 
from the "necklace" were examined. 
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distinct. The behavior of d4-90 cells in 
response to sodium, as measured by du- 
ration of continuous ciliary reversal, also 
exhibits a significant range as indicated 
by the figures given in published reports 
(5). Stock d4-578 cells always have yield- 
ed plaque patterns readily distinguish- 
able from the wild type. In a "blind" ex- 
periment with six coded cultures of wild- 
type cells and d4-578, we successfully 
identified each on ultrastructural bases 
alone. 

Our finding that a mutation of a known 
excitable membrane characteristic is 
correlated with a clear ultrastructural ab- 
normality of the membrane does not in- 
dicate the particular function or func- 
tions of the particles or the plaques, nor 
does it indicate a causal relation between 
plaque morphology and paranoiac phe- 
notype. It strongly suggests an involve- 
ment of these structures in Na+ influx 
or K+ efflux but does not demonstrate 
whether this correlation is primary, 
that is, whether the membrane particles 
represent ion gates or channels, or is 
secondary. An eclectic approach, com- 
bining genetical, biochemical, and elec- 
trophysiological analyses may lead to 
a clarification of the meaning of ciliary 
plaque variation in the function of the ex- 
citable membrane. 
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or mood-altering effect of endorphins. 

The existence of endogenous mor- 
phinelike substances (endorphins) in 
several species, including man (1), raises 
questions about their function. Narcotic 
antagonists, substances that competi- 
tively replace endorphin molecules at re- 
ceptor sites, reverse and block opiate ef- 
fects. The failure of the antagonist nalox- 
one even at high doses to have any effect 
on individuals not addicted to opiates 
suggests that in the normal state endor- 
phin receptors are unoccupied. How- 
ever, the ability of naloxone to diminish 
(i) analgesia produced by electric brain 
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stimulation (2, 3) and by acupuncture (4, 
5) in both animals and man, and (ii) 
stress-induced analgesia in rats (6) sug- 
gests that endorphins are released during 
these procedures. On the other hand, 
naloxone has no effect on hypnotic anal- 
gesia in humans (7). Naloxone also does 
not alter the threshold for escape of 
trained animals from an electric shock 
(8), but it reduces latency to escape 
when mice and rats are exposed to a hot 
plate for the first time (9, 10). In humans, 
naloxone at low dosage does not alter the 
response to painful electric shocks (11). 
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In 12 subjects, we found no effect of 
naloxone on experimentally induced is- 
chemic pain, but we noted an apparent 
increase of anxiety after naloxone (12). 
In the two experiments reported here, 
with 30 additional subjects, we have 
used both ischemia and cold-water im- 
mersion to produce pain. Naloxone had 
no effect on pain or mood in either proce- 
dure. 

Subjects for the cold-water (N = 18) 
and ischemic pain studies (N = 12) were 
male and female volunteers in equal 
numbers. Informed consent was ob- 
tained. Each subject experienced the 
painful stimulus at three sessions at 24- 
hour intervals. 

In the cold-water technique (13), pain 
was produced by immersing the domi- 
nant hand in a circulating bath of water 
at 10?C. Subjects rated the pain every 30 
seconds on a 10-point scale. A ple- 
thysmograph recorded the digital pulse 
from the index finger of the nondominant 
hand. As shown by Wolf and Hardy (13), 
pain increases for the first 2 minutes, 
then decreases. Pulse amplitude de- 
creases (indicating vasoconstriction) 
within a few seconds after the hand is im- 
mersed, then gradually returns to base- 
line as the pain decreases. If endorphins 
are involved in these adaptive responses, 
both the decrease in reported pain and 
the return of the pulse amplitude to base- 
line should be blocked by naloxone. 
Double-blind intravenous injections of 
saline or naloxone (1 and 10 mg) were ad- 
ministered in a counterbalanced order. 
The sequence of events at each session 
was: (i) begin recording the digital pulse, 
(ii) administer the Profile of Mood States 
(POMS) questionnaire (14), (iii) inject 
the drug, (iv) wait 5 minutes, (v) immerse 
the hand for 5 minutes and record sub- 
jective pain ratings, (vi) administer the 
morphine-benzedrine scale (MBG) of the 
Addiction Research Center Inventory 
(15) (a scale measuring opiate effects), 
and (vii) repeat POMS administration. 

Naloxone had no effect on any of the 
measures. Both the pain ratings (Fig. 1) 
and the digital pulse amplitude showed 
similar adaptive responses after saline 
and after naloxone. After all of the injec- 
tions, hand immersion produced an ini- 
tial acceleration of the pulse, then a 
slight deceleration. The pulse remained 
slightly elevated during the entire period 
the hand was immersed. Naloxone did 
not affect the scores on either the MBG 
or the POMS (Table 1). Subjects were 

In 12 subjects, we found no effect of 
naloxone on experimentally induced is- 
chemic pain, but we noted an apparent 
increase of anxiety after naloxone (12). 
In the two experiments reported here, 
with 30 additional subjects, we have 
used both ischemia and cold-water im- 
mersion to produce pain. Naloxone had 
no effect on pain or mood in either proce- 
dure. 

Subjects for the cold-water (N = 18) 
and ischemic pain studies (N = 12) were 
male and female volunteers in equal 
numbers. Informed consent was ob- 
tained. Each subject experienced the 
painful stimulus at three sessions at 24- 
hour intervals. 

In the cold-water technique (13), pain 
was produced by immersing the domi- 
nant hand in a circulating bath of water 
at 10?C. Subjects rated the pain every 30 
seconds on a 10-point scale. A ple- 
thysmograph recorded the digital pulse 
from the index finger of the nondominant 
hand. As shown by Wolf and Hardy (13), 
pain increases for the first 2 minutes, 
then decreases. Pulse amplitude de- 
creases (indicating vasoconstriction) 
within a few seconds after the hand is im- 
mersed, then gradually returns to base- 
line as the pain decreases. If endorphins 
are involved in these adaptive responses, 
both the decrease in reported pain and 
the return of the pulse amplitude to base- 
line should be blocked by naloxone. 
Double-blind intravenous injections of 
saline or naloxone (1 and 10 mg) were ad- 
ministered in a counterbalanced order. 
The sequence of events at each session 
was: (i) begin recording the digital pulse, 
(ii) administer the Profile of Mood States 
(POMS) questionnaire (14), (iii) inject 
the drug, (iv) wait 5 minutes, (v) immerse 
the hand for 5 minutes and record sub- 
jective pain ratings, (vi) administer the 
morphine-benzedrine scale (MBG) of the 
Addiction Research Center Inventory 
(15) (a scale measuring opiate effects), 
and (vii) repeat POMS administration. 

Naloxone had no effect on any of the 
measures. Both the pain ratings (Fig. 1) 
and the digital pulse amplitude showed 
similar adaptive responses after saline 
and after naloxone. After all of the injec- 
tions, hand immersion produced an ini- 
tial acceleration of the pulse, then a 
slight deceleration. The pulse remained 
slightly elevated during the entire period 
the hand was immersed. Naloxone did 
not affect the scores on either the MBG 
or the POMS (Table 1). Subjects were 
not able to differentiate naloxone from 
saline. 

Since we failed to find the same nalox- 
one effect as we had reported (12) on the 
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Endorphins: Naloxone Fails to Alter Experimental 
Pain or Mood in Humans 

Abstract. In 30 human subjects, experimental pain was produced by either is- 
chemia or cold-water immersion. In a double-blind procedure, intravenous doses of 
up to 10 milligrams of naloxone hydrochloride in saline were indistinguishable from 
similarly administered saline alone. There were no effects on subjective pain ratings, 
finger plethysmograph recordings, or responses to mood-state questionnaires. These 
laboratory procedures do not activate any functionally significant pain-attenuating 
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