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The equilibrium theory of island 
biogeography (I) proposes that the num- 
ber of species in some biotas may be ex- 
plained by an equilibrium resulting from 
a balance of immigration by extinction. 
Although the theory has been broadly 
applied (2) and widely accepted, it has 
recently been impugned for a lack of 
conclusive evidence for the existence of 
an immigration-extinction equilibrium in 
nature (3). 

Paradoxically, some of the most con- 
vincing evidence for the theory to date 
comes from apparent nonequilibrium 
faunas. These are post-Pleistocene iso- 
late faunas, such as on islands that are 
presumed to represent the dwindling 
portions of once larger faunas. These 
isolates were either part of a continental 
fauna from which they have become sep- 
arated or were part of an already existing 
isolate that has been shrinking in size be- 
cause of the rise of the sea level. The 
greater-than-expected numbers of spe- 
cies found in some of these faunas, rela- 
tive to what is predicted for similar 
faunas in regions of comparable size but 
with a stable geological past, can be ex- 
plained by the equilibrium theory. The 
theory would predict that they are super- 
saturated and in the process of shrinking 
or relaxing to equilibrium states with 
fewer species. 
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Table 1. List of islands and variables. Abbreviations: N, number of species; S, species diversity; A, area; D, distance; E, elevation; L, latitude; T, 
time of isolation; I, and 12, isolation indices. 

A D E 
T 

Island N S L (years I, 12 (kin2) (km) (m) ago) 

El Muerto 2 13.3 <1 6 191 30.16 8,300 3,751 938 
Encantado Grande 2 13.3 7 6 222 29.91 8,300 3,750 938 
Smith 3 20.0 4.5 5 474 29.00 7,700 5,500 1698 
Tiburon 12 92.0 1196 2 1218 29.00 6,100 5,046 1670 
San Marcos 10 66.0 31.5 4 271 27.25 6,100 3,000 600 
Danzante 5 33.0 4.9 1 106 25.75 8,600 5,511 1835 
Coronado 9 60.0 8.5 2 283 26.83 5,800 3,888 950 
San Ildefonso 3 20.0 2.6 10 118 26.60 9,800 937 59 
San Diego 3 20.0 1.3 17 220 25.25 11,400 1,032 69 
Las Animas 2 13.0 <1 14 27 25.16 12,000 632 33 
San Jos6 11 73.0 194 5 633 25.00 10,600 3,010 602 
Espiritu Santo 11 73.0 99 6 595 24.60 6,900 2,500 417 
Ballena 4 36.0 <1 6 228 24.60 6,900 1,971 1141 
Natividad 2 16.7 7.2 7 150 27.90 8,600 1,841 198 
Cedros 7 58.7 348 23 1204 28.16 9,100 639 27 
Mejia* 3 37.5 3.5 1 693 28.66 5,800 8,585 8030 
San Francisco* 8 72.0 2.6 8 210 24.92 6,100 2,586 471 

*Land-bridge islands isolated from larger islands, not the mainland. 

composing the nearest mainland pool. 
Thus with S for each island as the depen- 
dent variable, the following independent 
variables were considered, both as linear 
and log transformed functions: area of 
the island, A; topographic relief ex- 
pressed as elevation, E; shortest dis- 
tance to the mainland, D; latitude at the 
approximate center of the island, L; and 
the estimated time since the island be- 
came isolated from the mainland, T (12). 
In addition, two isolation indices were 
considered. For isolation index 1, I, was 
defined as 

Table 2. Correlation matrices. The matrix above the diagonal consists of r values from untrans- 
formed variables. The matrix below the diagonal is for r values from log-linear correlations, 
where the values of the variables on the left have been transformed. 

Vari- Val- S A D E L T I1 12 able 

S .60 -.20 .63 -.24 -.50 .11 .00 
A .77 -.05 .77 .25 -.19 .12 .00 
D -.25 -.15 .12 -.16 .62 -.74 -.48 
E .64 .56 -.08 .28 -.26 .21 .24 
L -.24 .25 -.16 .28 -.25 .44 .30 
T -.52 -.20 .61 -.26 -.21 -.60 -.44 
I, .21 .11 -.87 .11 .39 -.69 .85 
I2 .20 .08 -.88 .09 .30 -.70 .90 

NiAi 

i=1 Di 

For isolation index 2, I2 was defined 
as 

2= - NiA, 

i= 1 g2i 

where D is the distance to the ith source 
of potential immigrants (which includes 
the nearest mainland region and each is- 
land within a radius of approximately 50 
km), N is the number of species on the 
ith source and A is the area of the ith 
source (1000 was used as the value of A 
for the mainland) (13). The data are sum- 
marized in Table 1 and the correlation 
matrices are given in Table 2. 

The bivariate correlation between S 
and each of the independent variables re- 
veals significant correlations (P < .05) 
between S and both simple and log trans- 
formed values of A, E, and T. The best 
regression model resulting from the step- 
wise analysis is 

S = 1026 + 20(logA)- 

121(log T) - 372(log L) 
3 MARCH 1978 

and r2 = .91, P < .01. The bivariate cor- 
relations for S with area and elevation 
are similar to those found by Case (8) for 
eight of these same islands. 

In general, biogeographic studies have 
shown species diversity to be correlated 
with distance. This distance effect is at- 
tributable to the lower rate of immigra- 
tion with increasing distance from the 
mainland. In my study there is no signifi- 
cant correlation between S and distance 
(Table 2); this lack of correlation was al- 
so observed by Case (7). In fact, none of 
the three isolation or distance variables 
was significantly correlated with S in ei- 
ther the bivariate correlation or in the 
stepwise regression analysis. Yet dis- 
tance is correlated with lizard species 
diversity for the oceanic islands of the 
Gulf of California (6, 7) and for the Cali- 
fornia Islands (14). Two categories of hy- 
potheses may explain the absence of a 
distance effect for the islands in my 
study. First, the rate at which potential 
immigrants arrive on these islands is too 
low to affect species diversity in the 
short time since they have been isolated 
from the mainland. Second, the rate of 

arrival of potential immigrants on these 
islands may be high enough to affect spe- 
cies diversity, but the distance effect is 
not yet detectable for the following rea- 
sons. Almost half of these islands still re- 
tain a majority of the mainland species. 
Hence, the probability is low that a spe- 
cies will arrive that is not already repre- 
sented. Also, there is a correlation be- 
tween distance and age, so that the 
closest islands are also the most recently 
isolated from the mainland. In turn, 
these islands tend to have a larger pro- 
portion of the mainland species. Immi- 
gration is, a priori, not as important as 
extinction in supersaturated faunas. 

The existence of supersaturated land- 
bridge islands can be demonstrated 
graphically. The calculation of the resid- 
ual variation in S for each island, from 
the regession on area and latitude alone, 
has the effect of holding these two vari- 
ables constant. This residual variation in 
S calculated for each island should be at- 
tributable to island age and random error 
(15). Adding the mean value of S over all 
the islands to each residual value of S 
(16), and plotting these as a function of 
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island age, gives a plot of the corrected 
species diversity, S*, as a function of the 
time since isolation. This plot is given in 
Fig. 1. 

This result is equivalent to a plot of 
species diversity as a function of time 
(or, a relaxation curve) for a hypothetical 
island with mean area and latitude. A lin- 
ear regression of log transformed values 
of both variables produces a fitted curve 
described by the exponential function 

S* = 106-1.l13 

with a correlation coefficient of -.82 
(P < .01). Thus S* represents a stan- 
dardized level of species diversity to 
which each fauna has relaxed up to the 
present time. The relaxation process has 
both an immigration and extinction com- 
ponent. Since immigration is not detect- 
able, however, the relaxation curve here 
is approximately equivalent to an ex- 
tinction curve. These results are consis- 
tent with the hypothesis that these are 
nonequilibrium supersaturated faunas 
which are relaxing to states with fewer 
species. 

Recently, Simberloff (3) questioned 
the validity of the equilibrium theory of 
island biogeography, citing a lack of rig- 
orous proof of species turnover, or evi- 
dence that a fauna is approximately bal- 
anced, within an ecological time scale 
(17). The demonstration that nonequi- 
librium biotas behave dynamically in 
predicted ways is perhaps better evi- 
dence for the equilibrium theory than is 
the existence of biotas in apparent equi- 
librium. Thus, the equilibrium condition 
could be considered just one possible 
state predicted by the theory. 

BRUCE A. WILCOX 

Department of Biology, University of 
California, San Diego, La Jolla 92093 
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is approximately equivalent to an ex- 
tinction curve. These results are consis- 
tent with the hypothesis that these are 
nonequilibrium supersaturated faunas 
which are relaxing to states with fewer 
species. 

Recently, Simberloff (3) questioned 
the validity of the equilibrium theory of 
island biogeography, citing a lack of rig- 
orous proof of species turnover, or evi- 
dence that a fauna is approximately bal- 
anced, within an ecological time scale 
(17). The demonstration that nonequi- 
librium biotas behave dynamically in 
predicted ways is perhaps better evi- 
dence for the equilibrium theory than is 
the existence of biotas in apparent equi- 
librium. Thus, the equilibrium condition 
could be considered just one possible 
state predicted by the theory. 
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have been demonstrated in the cortex 
and, more recently, in the superior col- 
liculus (3-5). However, there appear to 
be important species differences with re- 
gard to the degree of plasticity exhibited 
by the mammalian visual system. Thus, 
in rabbit, visual restriction during devel- 
opment failed to modify the functional 
organization of single neurons in visual 
cortex (6). Furthermore, in comparison 
to the cat, visual deprivation in rabbit re- 
sults in relatively subtle effects upon the 
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cal or superior collicular neurons (2, 7). 
We now report a demonstration of 

plasticity in response to environmental 
restriction in a visual system that devel- 
ops relatively normally without visual 
experience. These results were obtained 
in the golden hamster (Mesocricetus au- 
ratus), where we have found that dark- 
rearing produces only subtle changes in 
the receptive-field properties of superior 
collicular neurons, whereas rearing in a 
stroboscopic environment results in dra- 
matic modifications in the functional or- 
ganization of this midbrain structure. 
The most clear-cut effect of stroboscopic 
rearing was on directional selectivity, 
and this finding is the main focus of this 
report (8). 

We used three groups of animals: 
group 1 included normal hamsters, 
reared on a 12-hour light/dark cycle 
(N = 33); group 2 included visually de- 
prived animals, raised from birth to 
adulthood in total darkness (N = 13); 
and group 3 included visually restricted 
hamsters that were raised from birth to 
adulthood in an environment illuminated 
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Directional Selectivity in Hamster Superior Colliculus 

Is Modified by Strobe-Rearing But Not by Dark-Rearing 

Abstract. Visual response properties of superior collicular neurons of normal ham- 
sters were compared with those of animals reared from birth to adulthood in either 
total darkness or with stroboscopic illumination. Directional selectivity was marked- 
ly reduced only in the strobe-reared animals, thus demonstrating visual plasticity in a 
system that develops apparently normally without visual experience. 
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