
posed not to continuous light but to a 
photoperiod that will ensure synchrony 
in locomotion and pheromone release 
with native weevils. Also, trap formula- 
tions of grandlure must have release 
rates equivalent to or greater than the 
peak release of pheromone by native 
males. 

The role of light in pheromone release 
is consistent with field observations of 
boll weevil behavior. Artificial light 
could possibly be introduced into a field 
at night, as in an orchard, to alter 
rhythms of pheromone release and so to 
interfere with mating behavior of pest in- 
sects. The use of proper LD cycles in the 
insectary might also enhance the field 
performance of sexually sterile insects in 
the "sterile-male" approach to insect 
control. 

We believe that chemical cues that 
play a part in insect attractants as related 
to sexual responses and host-parasite- 
predator behavior may, in general, be 
mediated by rhythms such as those ob- 
served in the specific case of the male 
boll weevil pheromone. 
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Measurement of Regional Substrate Utilization Rates 

by Emission Tomography 

Abstract. Emission tomography can be used to monitor, in vivo and regionally, the 
utilization of metabolic substrates labeled with positron-emitting radioisotopes pro- 
duced by a cyclotron. The concept was validated by measuring brain glucose utiliza- 
tion with carbon-ll-labeled glucose in rhesus monkeys. 
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Fig. 1. (A) Quantitative emission tomographic image of an adult rhesus monkey brain after 
intravenous administration of ["C]glucose and (B) x-ray transmission tomographic image (80- 
second scan with an 8-mm collimator on an EMI CT 5000 prototype body scanner) at the same 
level for comparison. The accompanying drawing shows the approximate anatomical orienta- 
tion of the images. 

Fig. 1. (A) Quantitative emission tomographic image of an adult rhesus monkey brain after 
intravenous administration of ["C]glucose and (B) x-ray transmission tomographic image (80- 
second scan with an 8-mm collimator on an EMI CT 5000 prototype body scanner) at the same 
level for comparison. The accompanying drawing shows the approximate anatomical orienta- 
tion of the images. 

0036-8075/78/0303-0986$00.50/0 Copyright ? 1978 AAAS 0036-8075/78/0303-0986$00.50/0 Copyright ? 1978 AAAS SCIENCE, VOL. 199, 3 MARCH 1978 SCIENCE, VOL. 199, 3 MARCH 1978 986 986 



tion elements were summed to give an 
average value for the brain slice. The ra- 
dioglucose, which was injected intra- 
venously, was prepared for this study by 
a modification of the technique described 
in (4). The specific activity of glucose in 
arterial blood was monitored every 15 
seconds for the first minute after injec- 
tion and every half-minute thereafter. 
Collection of data for an image was be- 
gun 4 minutes after injection of the radio- 
glucose and continued for 2 minutes. The 
arterial blood samples were counted in a 
well counter. Detection efficiencies were 
measured by using appropriately de- 
signed and calibrated phantoms (5). The 
data were analyzed by using a mathemat- 
ical model that has been applied success- 
fully in studies of brain glucose metabo- 
lism and transport (3). The model was 
modified for the present emission tomog- 
raphy studies (6, 7). 

Cerebral blood volume was measured 
in each monkey by causing it to inhale 
the gas "CO, thereby forming in vivo the 
vascular tracer ["C]carboxyhemoglobin 
(8). This measurement was used to cor- 
rect the scan data for the [1lC]glucose 
present in the brain vascular com- 
partment during the scan. 

A typical emission tomographic image 
of a monkey brain is shown in Fig. 1. 
Quantitative data are shown in Table 1. 
The glucose utilization rates compare fa- 
vorably with values obtained by others 
in monkeys and humans (9). Further- 
more, they demonstrate that our model 
(6), previously validated for use with a 
conventional detection system (3), can 
now be employed with emission tomog- 
raphy in a safe, quantitative manner for 
the measurement in vivo of truly regional 
organ metabolism in monkeys and in hu- 
mans. 

We wish to emphasize several impor- 
tant features of our approach. First, we 
employ a tracer that is biochemically 
identical to the compound being traced. 
This is not the case with other tracers 
that have been proposed (10), which are 
analogs of the parent compounds (for in- 
stance, 2-deoxy-D-glucose). With the an- 
alogs corrections must be made in the 
tracer model for differences in transport 
properties and enzyme affinities, which 
vary among species (10). Such correc- 
tions may present an added difficulty 
when the organ of interest is diseased. 
Second, the measurement we propose 
requires a relatively short time, so that 
repeated measurements can be made 
during the course of one experiment 
should they be required for the evalua- 
tion of transient phenomena. Third, our 
method is not restricted to [1C]glucose 
or to the brain. The approach is suffi- 
3 MARCH 1978 

ciently general to be employed with a va- 
riety of available radiopharmaceuticals 
utilized by brain, heart, or other organs. 
Finally, where only a relative mapping of 
regional utilization rate is sought within 
an organ of interest, sampling of periph- 
eral arterial blood is not necessary. 
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In Eq. 4, the interstitial-fluid specific activity is 
obtained in terms of blood specific activity as 
the solution of Eq. 3 in the form 

ft 
ai(t) = Ke -Kt eKuab(u)du 
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