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The cultured human fibroblast has a fi- 
nite replicative lifespan (1-3) which is in- 
versely proportional to the age of the do- 
nor (3-7). Moreover, this negative corre- 
lation appears to hold true whether the 
tissue of origin is lung (3), liver (6), or 
skin of various anatomical sites (4, 5, 7). 
Most tissue donors in such studies have, 
as a rule, been randomly chosen from 
living subjects and from subjects at post- 
mortem, many of them with overt pa- 
thology (1-3, 5-7). But other donors, af- 
fected by specific inherited disorders of 
premature and severe aging, give rise to 
fibroblast strains with significantly de- 
creased replicative lifespans in com- 
parison to age-matched controls (5, 8). 
At several laboratories it has now been 
demonstrated that diabetes mellitus, a 
common genetically determined disorder 
that reduces life expectancy (9), also has 
an adverse, although more subtle, influ- 
ence on fibroblast growth capacity (4, 5, 
10). The present results indicate that 
both clinically apparent diabetics and 
subjects genetically predisposed to dia- 
betes show the inverse correlation be- 
tween donor age and replicative lifespan 
of cultured fibroblasts, whereas carefully 
selected normal individuals fail to show 
this phenomenon. 

Three groups of subjects, 25 normal 
controls, 26 diabetics, and 21 "pre- 
diabetics" (both parents of each pre- 
diabetic had maturity-onset diabetes) 
volunteered skin biopsies for this study. 
Fibroblast strains were developed from 
4-mm punch biopsies of anterior forearm 
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nated as the replicative life-span. Each 
strain was monitored for mycoplasma 
contamination (12) two or three times 
during the life-span and again on termi- 
nation; results were uniformly negative. 

Normal strains showed significantly 
better growth capacity than diabetic and 
prediabetic cells for various parameters 
in primary and secondary culture (10); 
these data will be reported in detail else- 
where (13). In no case did growth failure 
occur in primary cultures, and all cell 
strains were capable of at least 25 MPD 
following initial harvest. The replicative 
life-span of normal strains was 51.76 + 
10.92 MPD (mean ? standard deviation) 
compared to prediabetic strains, 48.92 ? 
11.88, and diabetics, 47.54 ? 13.10. Al- 
though these means were not statistically 
different, a significant linear trend was 
observed (P < .05). That is, with in- 
creasing predisposition to diabetes (dia- 
betic > prediabetic > normal) there is a 
progressive decrease in replicative ca- 
pacity. 

When donor age was plotted against 
total MPD, diabetics and prediabetics 
showed a significant negative correlation 
which was not evident for normal sub- 
jects (Fig. 1). When all three groups were 
combined (Fig. 2) a highly significant 
negative correlation appeared between 
donor age and replicative life-span. The 
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The results confirm and extend earlier 
observations on the inverse correlation 
between donor age and replicative life- 
span but emphasize the necessity to 
identify thoroughly the physiologic stat- 
us of the donors. Thus, individuals with 
clinically apparent diabetes mellitus, a 
common genetically determined disorder 
associated with reduced life expectancy 
(9), conform to the expected inverse cor- 
relation. Similar results are found in sub- 
jects with a genetic predisposition to dia- 
betes as well as in these two groups 
combined with normals, and this last sit- 
uation probably provides a closer ap- 
proximation to the more random popu- 
lation samplings of earlier studies (1-3, 
5-7). That carefully selected normal sub- 
jects fail to show the negative correlation 
may be explained by two perhaps inter- 
related factors. First, the minimal risk of 
developing diabetes in our normal sub- 
jects may be associated with greater ge- 
netic heterogeneity than in the other two 
groups, and therefore, greater variance 
in fibroblast growth potential. Second, in 
the normal subjects defined here, partic- 
ularly those in and beyond middle age, 
there is a greater likelihood of longevity 
(9), and this may be expressed in vitro as 
increased replicative capacity of fibro- 
blasts. The idea that cell strains derived 
from older subjects free of detectable ab- 

converse, that donors with progeria, 
Werner's syndrome, and other heredi- 
tary disorders of premature aging give 
rise to fibroblast cultures with a down- 
ward skew in growth potential (and other 
cellular defects) is now increasingly evi- 
dent (5, 8). 

Our data indicate that in any studies of 
the effect of donor age on growth or any 
other parameter in cultured cells the ge- 
netic and metabolic identity of each sub- 
ject must be meticulously defined; like- 
wise, the presence or absence of specific 
pathology must be established. Taken 
with other observations (4, 5, 8, 10, 13), 
the data also show that the genetic de- 
fects in diabetes mellitus can be ex- 
pressed in vitro as decreased growth po- 
tential in cells of extrapancreatic origin. 

SAMUEL GOLDSTEIN 
ELENA J. MOERMAN 

Departments of Medicine and 
Biochemistry, 
McMaster University, Hamilton, 
Ontario, Canada L8S 4J9 

J. STUART SOELDNER 
RAY E. GLEASON 

DONALD M. BARNETT 
E. P. Joslin Research Laboratory, 
Department of Medicine, 
Harvard Medical School, 
Boston, Massachusetts 02215 

of this regression line indicated a normality perform as well as many 
References and Notes 

decrement of 0.25 MPD for each strains from chronologically younger in- 1. H. E Swim and R. F. Parker, Am. J. Hyg. 66, 235 (1957). 
f life, similar to the value reported dividuals remains unproved but now 2. L. Hayflick and P. S. Moorhead, Exp. Cell Res. 

rtin et al. (5). warrants further study. However, the 253 
585 

(1961). 3. L. Hayflick, ibid. 37, 614 (1965). 
4. S. Goldstein, J. W. Littlefield, J. S. Soeldner, 

Proc. Natl. Acad. Sci. U.S.A. 64, 155 (1969). 
5. G. M. Martin, C. A. Sprague, C. J. Epstein, 

Lab. Invest. 23, 86 (1970). 
6. Y. LeGuilly, M. Simon, P. Lenoir, M. Bourel, 

Gerontologia 19, 303 (1973). 
A 7. E. L. Schneider and Y. Mitsui, Proc. Natl. 

N = 72 Acad. Sci. U.S.A. 73, 3584 (1976). 
= -0.375 8. S. Goldstein and E. J. Moerman, Interdisciplin. 

'_ r ^- -.Top. Gerontol. 10, 24 (1976); S. Goldstein, in 
P< .001 The Genetics of Aging, E. L. Schneider, Ed. A *A *? ?* (Plenum, New York, in press). 

9. H. H. Marks and L. P. Krall, in Joslin's Diabe- 
A? ^~~~~~A tes Mellitus, A. Marble, P. White, R. F. 

A A ? ? ? A Bradley, L. P. Krall, Eds. (Lea & Febiger, 
Philadelphia, Pa., 1971), pp. 209-254; G. S. Bale 

*A I ? and P. S. Entmacher, Diabetes 26, 434 (1977). 
/ax>a, ,, ,A A 10. S. Goldstein, E. J. Moerman, J. S. Soeldner, R. 

E. Gleason, D. M. Barnett, J. Clin. Invest. 53, 
A* os"* A A * 27a (1974); S. Goldstein, S. Niewiarowski, D. P. 

-~~~~~~~~~~~~~~~~~~~_ - ^^-^- ~Singal, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34, 
?* * ? ^ 1 A 56 (1975); R. Vracko and E. P. Benditt, ibid., p. 

A AA au- 68; D. W. Rowe, B. J. Starman, W. Y. Fuji- 
moto, R. H. Williams, Diabetes 26, 284 (1977); 

A ^ A * ? J. Archer and R. Kaye, ibid. 26 (Suppl. 1), 361 
(1977). 

-0"~ At * * --~ 11. C. B. Kahn, J. S. Soeldner, R. E. Gleason, L. 
* 0 A Rojas, R. A. Camerini-Davalos, A. Marble, N. 

Engl. J. Med. 281, 343 (1969); 0. P. Gandaand 
A ^ A * J. S. Soeldner, Arch. Intern. Med. 137, 461 

A 
~A&L ~~~~~ A ~(1977). 

_n- A r~ * n 12. Mycoplasma contamination was monitored by 
A L. Hayflick, Stanford University. 

13. S. Goldstein, E. J. Moerman, J. S. Soeldner, R. 
A E. Gleason, D. M. Barnett, in preparation. 

14. We thank J. Littlefield for helpful suggestions, 
l~ l~ 1l I1~ I~ l llll SmithI I L. Hayflick for mycoplasma testing, and T. 

Smith, for assistance in obtaining the biopsies. 
0 1 0 20 30 40 50 60 70 80 Supported by grants from the Medical Research 

Council of Canada (MT-3515), the Canadian 
Ag e o f do por (ye ars) Diabetic Association Foundation Fund, and 

Graph of the three groups in Fig. 1 combined, showing correlation between donor age NIH (AM-09748 and AM-05077). 
licative life-span: y = 59.24 - 0.25 x. 7 June 1977; revised 15 August 1977 

2 SCIENCE, VOL. 199 

I 


