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n = 0, 1, 2, ... and the usual eigen- 
functions fulfill ,n(-x) = (-l1).?,j(x). 
Take as a perturbation 

V = Ix-" (2) 

Discontinuous functions are not un- 
known in the mathematical formulation 
or solution of physical problems; ex- 
amples are idealized media boundaries 
and first-order phase transitions. Gener- 
ally, in the context of solutions to prob- 
lems, such as the formation of shocks in 
nonlinear wave propagation, certain de- 

simply a discontinuity among states of a 
given Hamiltonian (as can happen when 
degeneracies occur), but a discontinuity 
of the Hamiltonian itself. Normally, as 
we shall see, there is convergence as 
X ->0+; that is, Ho + XV-> Ho' as 
X -- 0+, but Ho' : Ho. We emphasize 
that Ho', called a pseudofree Hamilton- 

Summary. Perturbations of quantum systems ranging from oscillators to fields can 
be either continuous or discontinuous functions of the coupling. Even non- 
renormalizable fields may now find a natural interpretation. 

tails regarding the singularity depend on 
initial data or model parameters that en- 
ter the equations in fairly innocuous 
ways. Occasionally, the dependence on 
the model parameters is so smooth as to 
render the resulting discontinuity at first 
sight surprising. This appears to be the 
case with a class of examples in quantum 
theory that we shall describe in this ar- 
ticle and that range from simple prob- 
lems in quantum mechanics to extremely 
complex problems in quantum field theo- 
ry that have so far resisted all conven- 
tional attempts at solution. 

It seems self evident that if A and B are 
two quantities, then the sum A + XB is 
continuous in the parameter X, and in 
particular, say, as X -> 0+ (decreases to 
zero from positive values) that A + 
XB -> A. We propose to discuss counter- 
examples to this elementary proposition. 
Our examples are motivated by model 
problems in which A = Ho, the free 
Hamiltonian for some system, and B = 
V, the interaction potential, and what we 
consider then are examples for which 
Ho + XV - H0 as X -> 0+. This is not 
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ian, generally has eigenvectors and ei- 
genvalues different from those of H0. 
Furthermore, one finds that Ho' + XV 
- Ho' as X -> 0+. In this situation we 
say that V is a discontinuous perturba- 
tion of H0, while V is a continuous per- 
turbation of Ho'. Figure 1 is a pictorial 
representation of this general state of af- 
fairs. And to illustrate the general con- 
cepts, let us consider the following 
simple example. 

Prototype Elementary Example 

(Field Theory in Miniature) 

Take as the free Hamiltonian the stan- 
dard harmonic oscillator for a single de- 
gree of freedom with amplitude-x in the 
Schrodinger representation 

2 

Ho= -2 a + 4x (1) 

with unit angular frequency and mass, 
and the choice of dimensions is such that 
h = 1 (h = Planck's constant/2rr). The 
free spectrum of eigenvalues E, = n + -, 

the singularity of which depends on the 
magnitude of a. Even this elementary 
example exhibits interesting properties 
as a function of a (1). Broadly speaking, 
if a - 2 the potential can be defined to 
be a continuous perturbation of the har- 
monic oscillator, while if a > 2 this is 
impossible and the potential is necessari- 
ly a discontinuous perturbation of the 
harmonic oscillator. It is not difficult to 
determine the zero-coupling limit when 
a > 2. In fact, for any a > 2 it follows 
that Ho + V -- Ho', where Ho' is de- 
scribed either (i) by the differential oper- 
ator -a2/dx21DBc + 2x2, where DBC de- 
notes Dirichlet boundary conditions at 
the point of singularity [that is, 
?q(0) = 0], or (ii) by the eigenfunctions 
n,'(x), which are equal to the odd-parity 

harmonic oscillator eigenfunctions con- 
tinued for negative argument as either 
even or odd functions, and the eigen- 
values E,', which are doubly degenerate 
values of En corresponding to the eigen- 
values of the odd-parity harmonic oscil- 
lator states (see Fig. 2). It is notable that 
only one pseudofree Hamiltonian Ho' 
arises for all a > 2. Of course, the 
pseudofree Hamiltonian varies with the 
location of the singularity, namely if Eq. 
2 is generalized to V = Ix - cl- for arbi- 
trary c. In this case the Dirichlet bound- 
ary conditions apply at x = c, and gener- 
ally no eigenfunction or eigenvalue of the 
harmonic oscillator survives in Ho'. On 
reintroduction of the perturbation in 
these examples, the energy levels depart 
continuously from those of the pseudo- 
free Hamiltonian, typically, for small X, 
as O(X), O(-X In X), and O(X1/(a- 2)) for 
2 < a < 3, a = 3, and a > 3, respec- 
tively (2). 

In this simple example one sees that 
the very presence of a suitably singular 
potential, once it has been introduced, 
leaves an indelible imprint on the sys- 
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tern, leading to a permanent and irrevers- 
ible change. It is plausible that this phe- 
nomenon could arise in a variety of other 
model systems with sufficiently singular 
potentials, and that is one line of dis- 
cussion we wish to pursue. Before that 

analysis, however, there are further 
worthwhile insights to be drawn from 
our simple example. 

Suppose a < 2 and we initially adopt a 
rather direct meaning of the singularity 
of Ixjl equal or equivalent to the "regu- 
larization" V,(x) = (Ixl + E)-"as E - 0+. 
For each E > 0 the sum H, + AVe is well 
defined and one can study the double 
limit of E -O 0+ followed by A -> 0+. 
Whenever a < 1 this procedure leads to 
the free Hamiltonian (harmonic oscilla- 
tor) and is entirely acceptable in that 
realm; for a > 1 this prescription leads 
to the pseudofree Hamiltonian described 
earlier as being unavoidable when a > 2. 
To circumvent that outcome in the range 
1 < a - 2 requires carefully chosen al- 
ternative regularizations in order to en- 
sure that the interaction corresponds to a 
continuous perturbation of the harmonic 
oscillator. Characteristically, one must 
choose a regularization such as 

V,(x) = (1X + E)-a - 

[(2 - a)-'] 

t f kjAXj 1~le(2- a)j- 1 8(X) (3) 
j = 1 

where the numerical coefficients kj are 
determined recursively from k = 

2/(a - 1) and 

1 j-1 
kj [ kk -n [1 - (2 - a)j] , = i-n 

j = 2, 3, . . . (4) 

These formulas hold whenever (2 - a)- 
is nonintegral; if (2 a)-1 J is integral 
the last term in the square brackets in 
Eq. 3 is replaced by kjXJ- 1lne, where 
k, = -2 for J = 1, and kj is given as in 

Eq. 4 for J > 2, apart from the prefactor 
-1 /1 - (2 - a)J]. 

Qualitatively, an expression such as 
Eq. 3 is derived (3) by exploiting the fact 
that near a singularity of the potential 
any nonvanishing continuous solution 
+(x) of the Schr6dinger equation has a 
dominant and characteristic x depen- 
dence, which in virtue of the continuity 
leads to a definition of the regularized 
potential as iq/'(x)/O(x). Note that the ex- 
ponent of E in each term in Eq. 3 is nega- 
tive and its variation with a and j leads to 
quite specific relative rates of divergence 
of the coefficients of 6(x). All such regu- 
larizations are arbitrary up to an addi- 
tional coefficient of 8(x) that is indepen- 
dent of E, a fact already exploited in de- 
riving the coefficients kj. Any coefficient 
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of 8(x) that vanishes as e vanishes plays 
no role in the limiting Hamiltonian. 

If a = 2 all regularizing terms in Eq. 3 
diverge as e-1 and an infinite number of 
such terms arise. In this case the regular- 
ized potential admits a closed-form ex- 
pression given by (3) 

V(x) = 
(IXI + )-2 - 

4e-1[l + (1 + 8X)]-1S(x) (5) 

The coefficient of 8(x) here is equal to 
that given by Eqs. 3 and 4 for X < 1/8 
and can be extended to larger values by 
analyticity or by some other extension 

technique. But it is significant that while 
Eqs. 3 and 4 define an acceptable regu- 
larization for all X > 0 and any a < 2, 
the expression in Eq. 5 is unacceptable if 
A > 3/8 since a corresponding analytic 
extension of the eigenfunctions to values 
of XA 3/8 leads in the limit e -> 0+ to 

nonnormalizable states. As a conse- 

quence, suitably augmented perturbation 
techniques suffice for all XA 0 when 
a < 2, and for 3/8 > A > 0 when a = 2, 
but they lead to entirely fallacious results 
when X > 3/8. This means for a = 2 that 

Discontinuous 

0 

PF 

PF ̂ .:.:.. Continuous 

Fig. 1. Highly schematic plot of theory against 
coupling constant. Here, theory stands for the 
set of eigenvalues and eigenfunctions, or 
some other characterizing information such as 
the collection of Green's functions. Any un- 
perturbed system starts at the point F (for 
free). As the coupling constant of a continu- 
ous perturbation increases from zero, the sys- 
tem moves to the right, following a curve in 
the branch marked "continuous," the specific 
curve depending on the particular pertur- 
bation. When the coupling decreases toward 
zero any such perturbation passes continu- 
ously back to the point F. On the other hand, 
on the introduction of a discontinuous per- 
turbation the system instantly jumps from the 
point F to a new branch marked "discontin- 
uous" and follows a line in that branch which 
is determined by details of the specific per- 
turbation. Now when the coupling decreases 
toward zero any such perturbation passes 
continuously to a new point PF (for pseudo- 
free) distinct from the point F. Reintroduction 
of the original perturbation leads to the behav- 
ior of a continuous perturbation, not about the 
point F, but about the point PF. 

an alternative solution applies when 
X > 3/8, but such behavior is still com- 
patible with the emergence of the free 
Hamiltonian as X -> 0+. 

Whenever 3/2 < a < 2 (and so there 
are two or more terms in the sum in Eq. 
3) it is noteworthy that a X-dependent 
regularization is required in order to 
fashion a continuous perturbation of the 
harmonic oscillator. It is formally cor- 
rect to equate the need for A-dependent 
counterterms in the anharmonic oscilla- 
tor example with a corresponding need 
for coupling-dependent counterterms in 
the context of quantum field models [for 
example, the need for a mass counter- 
term quadratic in the coupling constant 
in a (0(4)3 theory; that is, a quartic self- 
coupled covariant scalar field theory in 
three space-time dimensions]. Indeed 
the relation of the anharmonic oscillator 
to quantum field theory is rather like the 
relation of single-celled organisms to 
vast and complex higher life-forms in 
that essential elements of the complex 
forms are still recognizable in the simpler 
forms. As a increases toward 2, and the 
required polynomial in X enlarges, we re- 
late this situation to increasingly singular 
superrenormalizable models; when 
a = 2 and an infinite-order polynomial in 
A is required, we relate this situation to 
renormalizable models; and when a > 2 
and no regularization exists that yields a 
continuous perturbation of the free theo- 
ry, we relate this situation to non- 
renormalizable models. But for a > 2 
the anharmonic oscillator has a perfectly 
acceptable solution when regarded as a 
discontinuous perturbation of the free 

theory. Perhaps a similar situation also 
applies to nonrenormalizable quantum 
field theories. 

Path Space Viewpoint 

A broader perspective on discontin- 
uous perturbations may be won in the 

general framework of a sum over his- 
tories; that is, a path space quantization 
(4). Formally, a transition amplitude is 
expressible in the form 

(6) Ao = E eilon 
histories 

where I,, denotes the classical action I, 
evaluated for the history, H, summed 
over all histories that respect the initial 
and final boundary conditions. When a 

perturbation is introduced the transition 

amplitude becomes 

A= E_ esii ei('e, + aII,I) 
histories histories 

(7) 
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where I1H denotes the action of the per- 
turbation and X is the coupling constant. 
Suppose that the presence of I serves to 
delete certain histories from the sum so 
that 

A= r', histories 

Free 
Wave 

function Energy 

1/2 

eioNH+ XItH) (8) 

where the prime symbolizes the appro- 
priate deletion. How can such a deletion 
arise? In simplest terms, a history H will 
be deleted if IiH = o while IOH < oo; that 

is, if the history is "allowed" by the free 
action Io and "forbidden" by the per- 
turbing action ,1 because of an infinitely 
rapid oscillation. If one deals with imagi- 
nary-time quantum theory, then the sum- 
mand in Eqs. 7 and 8 is replaced by 
exp[-(WOH + XW1aH)], where W denotes 
the imaginary-time action; here the con- 
ditions WIH = oo and WOH < oo delete a 

history because of an infinite suppres- 
sion rather than an infinite oscillation. 
Although oversimplified, such heuristic 
criteria are nevertheless quite useful and 
we shall rely on them heavily. The over- 
simplification has to do with the measure 
of history sets for which I = oo (or 
W1 = oo) and, more importantly, with the 
fact that the finiteness of Io + X1i (or 
Wo + XW,) is not the real criterion for 
the support of the histories involved. Oc- 
casionally enough is known about the 
path behavior to give precise criteria, but 
even then the essence is unchanged. In 
either the real- or the imaginary-time 
form, we see that a discontinuous per- 
turbation acts in history space partly as a 
"hard core" in relation to histories oth- 
erwise allowed by the unperturbed ac- 
tion (5). 

When significant histories are deleted 
it readily follows as X -> 0+ that 

ei (io. + XiH) >- 
histories 

>' ei1,oe Ao' A Ao (9) 
histories 

In other words, as X -> 0+ the transition 
amplitude is not continuously connected 
to the free theory but to an alternative, 
pseudofree theory. Here, expressed in 
path space language, is an evident mani- 
festation of the indelible imprint left by 
the perturbation after its removal. Of 
course, any meaningful perturbation 
analysis of the interacting theory must be 
based on the pseudofree system and not 
the free system. 

Relation to conventional hard cores. 
Situations entirely analogous to the fore- 
going arise for conventional hard-core 
problems. However, in the present case 
it is significant that histories and not con- 
figurations are generally relevant. Con- 
sider the anharmonic oscillator with I, 
= t[d2(t) - x2(t)]dt and I, = Sx(t)l-dt 
17 FEBRUARY 1978 
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Fig. 2. First four eigenfunctions and eigen- 
values for a free harmonic oscillator H0 and 
for a pseudofree oscillator Ho' determined as 
the zero-coupling limit for a perturbation IxI-a 
for any a > 2. Each pair of higher-order ei- 
genfunctions and eigenvalues follows a simi- 
lar pattern of change. 

for the special range 0 <a < 1. For 

configurations one requires finite en- 
ergy, and attention is thus fixed on con- 
tinuous paths for which Ix(t)l- < oo, and 
so x(t) > 0 (or < 0) for all X > 0; as 
X -> 0+ such restricted paths can never 
yield all the configurations suitable to the 
free theory. However, in the sum over 
histories almost all paths allowed by Io 
satisfy lxl-"dt < oo over any finite in- 
tegration range, and as a consequence I, 
is a continuous perturbation of I,. 

Necessary condition for a discontin- 
uous perturbation. An important clue to 
a possible discontinuous perturbation is 
the presence of histories H for which 
IOH < oc and I1H = oc (or WOH < oc and 
W1H= oo). Generally speaking, depend- 
ing on the model under examination, fi- 

History Interaction 
behavior singularity 

Smooth Positive 
,3 power 

Rough Exponential 

Negative 
Distribution power 

Fig. 3. Qualitative nomogram relating the 
roughness of the free histories (left side), the 
singularity of the interaction (right side), and 
the nature of the perturbation (middle). To 
use the nomogram, draw a straight line con- 
necting the type of allowed histories (for ex- 
ample, rough) with the type of singularity of 
the interaction (positive power); the line 
passes through the middle region and identi- 
fies the nature of the perturbation (continu- 
ous). Lines that pass through the middle, for a 
given allowed history type, indicate the mini- 
mally singular interaction likely to lead to a 
discontinuous perturbation. 

niteness of Io may imply, for example, 
that histories are continuous or that they 
admit logarithmic or power-law singular- 
ities. Coupled with each possibility for fi- 
nite I, histories are choices for 11 that 
conceivably correspond to discontin- 
uous perturbations. Specifically, nega- 
tive field powers are required for contin- 
uous histories, exponential functions 
suffice for histories with logarithmic sin- 
gularities, and suitable positive powers 
apply for histories with power-law singu- 
larities. The relation of the roughness of 
histories allowed by I, and the singular- 
ity sensitivity of I, for the potentially 
continuous or discontinuous nature of 
the perturbation is qualitatively depicted 
by the nomogram in Fig. 3. 

Interactions that act partly as a hard 
core in a sum over histories provide a 
particularly simple picture of discontin- 
uous perturbations. This viewpoint cov- 
ers anharmonic oscillators-and also, we 
believe, nontrivial nonrenormalizable 
field theories. Yet, conventional prej- 
udices against nonrenormalizable field 
theories are presently so strong that an 
indirect approach to their discussion is 
highly advisable. This task we now un- 
dertake. 

Noise Theory as a Source of Models 

(Field Theory in Disguise) 

A class of simple examples can be giv- 
en to illustrate the range of possibilities 
inherent in Fig. 3; moreover, these ex- 
amples are ultimately relevant to an un- 
derstanding of field theory as well (6). 
This class involves generalized types of 
histories x(t) that may not be pointwise 
defined and thus are more appropriate to 
noise theory than to conventional par- 
ticle mechanics. Choose the imaginary- 
time form for the action, let i(w) denote 
the generalized Fourier transform of x(t), 
and take 

Wo = f (co 12 + 1)lx(i(w)2d (10) 

where e, 0 < 1, is a parameter at our 
disposal. Such a choice leads to zero 
mean Gaussian noise with a power spec- 
trum (IW12o + l)-', which is integrable for 
s > 2 and nonintegrable for s ' I. The 
essential nature of the histories varies as 
s varies: smoother histories are associat- 
ed with larger : values; rougher histories 
are associated with smaller : values. 
Standard imaginary-time quantum me- 
chanics arises for s = 1, and the associ- 
ated histories are continuous. In fact, the 
histories are continuous whenever s > 2, 

specifically fulfilling the condition 

Ix(t) - x(t')I 
_ Ct - t'l- -E (11) 
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with probability one for any e > 0 and 
some constant C (and failing with proba- 
bility one if e < 0). This condition makes 
it clear that as s decreases toward I the 
paths become rougher, although all are 
continuous. This s dependence in al- 
lowed path behavior for Wo reflects itself 
in a s dependence of the class of W, ex- 
pressions that lead to discontinuous per- 
turbations. If W1 = f lxl-dt, then diver- 
gences arise whenever a(e - ) > 1, 
that is, a > 2/(2e - 1), which is the gen- 
eralized criterion that leads to discontin- 
uous perturbations (analogous to a > 2 

ifS= 1). 
When ( < the paths are no longer 

continuous, infinite (but integrable) val- 
ues are allowed, and singularities of W1 
are won by exploiting the infinite path 
values rather than any specific finite val- 
ue, say zero, as in dealing with negative 
powers. Characteristic singular path be- 
havior is represented by the (distribu- 
tional) nature of the Fourier transform of 
the power spectrum, which for small 
times is proportional to lnltl for e = 2, to 

itl-(l 
- 2 for > > s > 0, and to 8(t) for 

= 0. Again, the increasing roughness 
of the paths for decreasing e is evident. 
In the range 2 > s > 0, pth-order local 
powers (constructed just like Wick pow- 
ers) of the path, and denoted by :xP(t): 
exist as distributions provided p < 1/ 
(1 - 2e). This means that W1 = f:xP(t):dt, 
p even, is finite with probability one for 
a finite integration range. For p - 1/ 
(1 - 2e) this is no longer true, but stan- 
dard renormalization tricks formally suf- 
fice to remove divergences whenever 
p < 2/(1 - 2e). The construction of 
these renormalized models is such as to 
lead to continuous perturbations. If 

p > 2/(1 - 2e) we are in what presently 
constitutes a no-man's-land of models 
for which standard renormalization tech- 

niques fail, and which thus qualify as 
"nonrenormalizable" in a sense com- 

pletely analogous to that of the term in 

quantum field theory. All this structure 
can be won just by varying the parameter 
e (which controls the roughness of paths 
in W0) and the parameter p (which con- 
trols the singularity sensitivity in W1). 

The preceding examples for W0 and W, 
serve to illustrate that behavior familiar 
in nonrenormalizable field theories can 
arise in fairly intuitive stochastic proc- 
esses. It is noteworthy that the heuristic 
criterion W0 = f(Jo, 12 + 1)Jl(co)l)2dw < Co 
implies W1 = flx(t)IVdt < o whenever 
p < 2/(1 - 2 N), but this implication is 
false whenever p > 2/(1 - 2s). This ob- 
servation suggests a hard-core inter- 
pretation to deal with the so-called non- 
renormalizable cases where p > 2/(1 - 

2e). Concomitant with that interpretation 
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is the view that W1 represents a discon- 
tinuous perturbation of W0, and that 
what really is relevant to the analysis is 
not the free theory but a pseudofree the- 
ory. 

Shot noise as a nonrenormalizable 
theory. Evidently the worst case from 
the point of view of the preceding dis- 
cussion is the case s = 0 since the paths 
are then the roughest and the sensitivity 
of the interaction term is then the great- 
est. If this most singular case can be un- 
derstood it should offer some hope for 
the other nonrenormalizable cases that 
are even less singular. 

For 5 = 0, W0 = fx2(t)dt and WI 

Sfx(t)lPdt. Let us set our goal on eval- 
uating the path integral 

C{s} = j exp{i s(t)x(t)dt - 

f x2(t)dt - Xf J(t)lJdt})x (12) 

where X is a normalization chosen so 
that when s = 0, C{0} = 1, and 2x is the 
differential volume in path space. This 
integral, as usual, has considerable heu- 
ristic but only formal significance. In 
particular, note that if the term fx2(t)dt 
were replaced by fi2(t)dt then Eq. 12 
would deal with a quantum mechanical 
problem and would involve continuous 
paths for which Ix(t)lP is well defined; in 
its present form Eq. 12 deals with paths 
not pointwise defined and the meaning of 
lx(t)lP as well as x2(t) is not at all obvious. 
One thing, however, does seem certain, 
namely that the answer must have the 
general form 

C{s} = exp{-fdtL[s(t)]} (13) 

for some real, even function L[s] subject 
to the normalization L[0] = 0. It is clear- 
ly the intent of Eq. 12 to exhibit no corre- 
lations for unequal times and this is just 
the content of Eq. 13. A simple argument 
next shows that the most general such L 
is given as 

L[s] = as2 + f[1 - cos(us)]dcr(u) (14) 

and represents possible Gaussian (a) and 
Poisson (ro) contributions. The free theo- 

ry is given by a = 1/4 and r- 0, and is 
realized as white noise. On the other 
hand, every interacting theory involves 
a - 0 and a- # 0, and is realized as (vari- 
ous forms of) shot noise. White noise 
may be described by 

XWN(t) = L ahnh(t) (15) 

where the an are independent, identically 
distributed normal variables and the h,(t) 
are elements of a complete orthonormal 
set of functions. Shot noise may be de- 
scribed as 

XSN(t) = - un(t - tn) (16) 

where the un are independent, identically 
distributed variables (as determined by 
o-) and the tn are distributed according to 
a Poisson law. The two types of noise are 
fundamentally different, and that fact is 
reflected in the construction of local 
powers of the noise. For white noise no 
prescription proves satisfactory (even al- 
lowing for arbitrary renormalization 
tricks); for shot noise it follows that 

t+e 
X9N(t) = lim 61 ( XsN(t)dt') P 

Ef -+ t 

= up8(t - tn) (17) 

describes a perfectly acceptable (re- 
normalized) local power. What is the 
moral? If local products are relevant- 
and they certainly are for interactions- 
shot noise and not white noise is basic. 

Fairly straightforward arguments 
thereafter finally lead to the solution of 

Eq. 12 being based on 

L[s] = [1 - cos(us)]e-2 - XIuIPdu/ulu 

(18) 

which has the immediate property as 
X -> 0+ that it does not pass to the free 

theory (that is, white noise) but instead it 

passes to a special, pseudofree theory 
still based on shot noise. In the context 
of our earlier discussion, every non- 

quadratic interaction represents a dis- 
continuous perturbation of the free theo- 

ry, but it represents a continuous per- 
turbation of the pseudofree theory 
defined by 

LpF[S] = [1 - cos(us)]e-u2du/Iu (19) 

Note that a meaningful, asymptotic per- 
turbation expansion of Eq. 18 in X exists 
relative to the pseudofree theory, but 
there is no relation whatsoever of these 
expressions to the free theory. 

Clearly, the present example illus- 
trates a hard-core behavior much more 
complex than that encountered in the an- 
harmonic oscillator, but conceptually the 
two cases are formally the same. 

Relevance and Relation to Field Theory 

Traditional studies of nonrenormaliz- 
able field theories assume that the princi- 
pal problem lies in the fact that the de- 
pendence of various quantities (such as 
Green's functions) on the coupling con- 
stant X does not admit a power series ex- 
pansion about zero (7). This behavior is 

suggested by readily constructed ex- 
amples in quantum mechanics of per- 
turbations that are continuous but not 
differentiable at zero coupling. Our pro- 
posal is conceptually rather different and 
asseris that nonrenormalizable field the- 
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ories generally correspond to discontin- 
uous perturbations. In addition, it is pos- 
sible that a meaningful perturbation the- 
ory does, in fact, exist when related to 
the appropriate pseudofree theory. What 
are the grounds for such a view? 

Hard cores infield theoty. In the imag- 
inary-time formulation of a covariant 
scalar field ?(x) with mass m in n space- 
time dimensions 

w0: = 2 In{[V(x)]2 + ;n22(x)}dnx 

w, =-f [ (x)l"Pdx (20) 

In constructing and evaluating a sum 
over histories, these expressions enter as 
free and interacting actions just as their 
elementary counterparts do in the anhar- 
monic oscillator and noise theory mod- 

els. Whether W, may possibly act as a 
discontinuous perturbation of W0 de- 
pends on the parameters p and n. Now, 
Sobolev-type arguments show that 
W0 < oc implies W1 < c provided 
p ? 2n/(n - 2), but not otherwise. 
Based on the examples discussed pre- 
viously, we would expect W, to be a con- 
tinuous perturbation if p < 2n/(n - 2); 
but if p > 2n/(n - 2), we would expect 
W1 to be a discontinuous perturbation. 
Reference to any standard field theory 
text shows that this division is exactly 
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uous perturbations in the noise theory 
examples of the previous section than in 
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views are deeply ingrained. Yet mathe- 
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not just white noise or filtered white 
noise, is relevant as a zero-coupling limit 
in the noise models inescapably leads 
one to say that certain non-Gaussian 
fields are relevant as zero-coupling limits 
in field theory. Of course, such pseudo- 
free quantum field models need not 
be in conflict with any general princi- 
ples; for example, asymptotic fields for 
pseudofree models would be free fields 
and would most likely have trivial 
scattering. 

Discontinuous perturbations in quan- 
tum theory are potentially as relevant as 
the more familiar continuous per- 
turbations. They deserve study and anal- 
ysis with an eye toward possible appli- 
cations in the real world. As we have re- 
lated, highly suggestive arguments can 
be put forth that discontinuous per- 
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turbations are relevant for nonre- 
normalizable field thories. It is cer- 
tainly tempting to believe them, for in 
one stroke this would explain the grossly 
unsatisfactory results obtained through 
conventional perturbation theory as well 
as provide a suggestion for determining a 
meaningful solution. Soluble models 
show that this is the case and make the 
goal worth pursuing. Techniques need to 
be devised to discover and recognize the 
indelible imprints that discontinuous per- 
turbations invariably leave behind-and 
one hopes for better insight than dis- 
played in Fig. 4! 
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the reaction starts from the surface of 
hot gas bubbles and again progresses lay- 
er after layer, the rate per molecule must 
again be divided by the number of layers 
to be burned through to obtain the mea- 
sured rate. 
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phase, another mechanism would have 
to be active in such cases, and if it is, it 
would also be expected to appear in 
some solid explosives. Unimolecular re- 
actions become bimolecular when there 
are not enough activating collisions to 
keep decomposition at its high-pressure 
rate (1). This is conveniently thought of 
as one form of starvation kinetics. The 
bond that is breaking is no longer fed fast 
enough to be in equilibrium with the 
translational degrees of freedom around 
it, but must draw its activation energy 
from a starving vibrational reservoir with 
which it equilibrates. However, there are 
other ways of starving the reservoir be- 
sides simply reducing the pressure of 
molecules colliding with it. One such 
way is to introduce inefficient transmis- 
sions of energy to the reservoir. This in- 
efficiency varies with the type of cou- 
pling madein collisions. An obvious way 
to produce a starvation process is to use 
a shock wave. In this case the time or 
intensity of the shock, or both, can pro- 
duce a starving reservoir in equilibrium 
with the hidden breaking bond and lead 
to a slow reaction rate. That such star- 
vation happens must be obvious to every 
student of the initiation or dying out of 
detonations in both gases and solids. 
In fact, starvation kinetics is the name 
of the game. This process of starvation 
of shock waves was discussed at some 
length in my Priestley lecture (2). 

Starved reaction reservoirs are conve- 
niently made by dumping measured 
amounts of energy into the reservoirs by 
all kinds of means. The formation of var- 
ious degrees of starved reservoir reac- 
tions in mass spectra can be devised by 
regulating the voltage of the ionizing 
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