
thesis in the subpopulation of epiphyseal 
cartilage cells susceptible to this stimula- 
tion. This hypothesis is consistent with 
the mode of action of the pharmacologi- 
cal agents used to inhibit the EF effect 
and with evidence on the control of cell 
division in other systems. 

The findings have further interest- 
ing implications. Tetrodotoxin-sensitive 
"channels" are usually characteristic of 
cells with fast-spreading action poten- 
tials (26). Our data suggest that mem- 
brane depolarization may play a role in 
the control of cell division in epiphyseal 
chondrocytes. The phenomenon may be 
related to the embryonic state of the tis- 
sue and has been suggested as a possible 
mechanism for the intercellular commu- 
nication involved in morphogenesis (27). 

Detailed knowledge of the charge dis- 
tribution and dipole moments in cell 
membranes (19) and the propagation of 
EF's in electrolytes would probably add 
to the understanding of the precise na- 
ture of the electrical events experienced 
by the cells in our system. We have dem- 
onstrated that an external oscillating 
field applied to cartilage cells in suspen- 
sion generates a perturbation that stimu- 
lates DNA synthesis, and that Ca2+ and 
Na+ fluxes are intimately related to the 
EF effect. Further studies should show if 
this phenomenon is involved in the me- 
chanical modulation of bone growth. 
This information could be used to influ- 
ence cell proliferation for therapeutic 
purposes. 
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Point: Errors in the "Apples in a Spacecraft" Model 
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Alfv6n (1) considered the motion of a 
number of inelastic particles ("apples") 
enclosed in a spacecraft in circular orbit 
around a central mass point. He con- 
cluded that the system tends toward a fi- 
nal state in which all particles are aligned 
on the circle described by the center of 
gravity of the spacecraft. This result was 
taken by Alfven as evidence in favor of 
his hypothesis on the formation of "jet 
streams" (2). 

Unfortunately, Alfven's reasoning is 
incorrect and the final state of the system 
is in reality rather different from what he 
predicts. This conclusion has apparently 
escaped notice so far, and Alfven's result 
continues to be cited uncritically (3). 
Thus it appears desirable to correct the 
record. For convenience I shall desig- 
nate by "up" and "down" the directions 
away from and toward the central mass, 
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respectively. Let ro be the radius of the 
orbit of the spacecraft's center of grav- 
ity, and a be the semimajor axis of the 
elliptical orbit of a particle. If a is less 
than ro, that is, if the particle is, in the 
mean, "lower" than the spacecraft's 
center of gravity, its angular velocity is 
larger than that of the spacecraft. Thus 
after a while it will hit the front wall of 
the spacecraft. As a result, the particle 
loses energy and a decreases. (The mean 
velocity of the particle on its new orbit 
will be larger than before; this is the usu- 
al paradox of Newtonian mechanics, 
whereby an artificial satellite losing ener- 
gy through friction with the atmosphere 
spirals down to Earth with increasing ve- 
locity.) There is then a new collision with 
the front wall, which decreases a further, 
and so on. On the other hand, the in- 
elastic collisions tend to damp out the os- 

SCIENCE, VOL. 199, 10 FEBRUARY 1978 

respectively. Let ro be the radius of the 
orbit of the spacecraft's center of grav- 
ity, and a be the semimajor axis of the 
elliptical orbit of a particle. If a is less 
than ro, that is, if the particle is, in the 
mean, "lower" than the spacecraft's 
center of gravity, its angular velocity is 
larger than that of the spacecraft. Thus 
after a while it will hit the front wall of 
the spacecraft. As a result, the particle 
loses energy and a decreases. (The mean 
velocity of the particle on its new orbit 
will be larger than before; this is the usu- 
al paradox of Newtonian mechanics, 
whereby an artificial satellite losing ener- 
gy through friction with the atmosphere 
spirals down to Earth with increasing ve- 
locity.) There is then a new collision with 
the front wall, which decreases a further, 
and so on. On the other hand, the in- 
elastic collisions tend to damp out the os- 

SCIENCE, VOL. 199, 10 FEBRUARY 1978 692 692 



cillations, that is, the deviations of the 
orbit from circularity. So we may expect 
the process to terminate with the particle 
lying motionless in the lowest point of 
the spacecraft. (For simplicity I assume, 
like Alfv6n, that the spacecraft always 
turns the same side toward the central 
body.) This is a stable equilibrium posi- 
tion: the particle is held against the toor 
by a positive downward force, because 
the centrifugal force acting on it is less 
than the attraction of the central body. 
Conversely, a particle with a greater 
than r0 rotates more slowly than the 
spacecraft, hits the back wall, gains en- 
ergy and rises further, until it reaches the 
highest point of the spacecraft. Thus in 
the final state the particles are divided in- 
to two groups, one group lying on the 
floor and the other on the ceiling. This 
conclusion is not changed if mutual colli- 
sions of the particles are taken into ac- 
count, or if some gas is present in the 
spacecraft. 

Alfven reached a different conclusion 
simply because he assumed, without jus- 
tification, that the particles "will not be 
in permanent contact with the walls." 
This arbitrary assumption eliminates 
from the start the correct solution of the 
problem and leaves only the artificial so- 
lution where all particles are in the same 
circular orbit as the spacecraft's center 
of gravity, with a = ro. This is actually a 
solution in a mathematical sense: a par- 
ticle placed exactly in this orbit will re- 
main there. But it is a physically mean- 
ingless solution because it corresponds 
to an unstable equilibrium: any deviation 
of a from the exact value r0o will be ampli- 
fied by collisions with the walls, and the 
particle will either fall to the floor or rise 
to the ceiling. 

There is another error near the end of 
Alfv6n's report, in the following pas- 
sage: "Suppose that the mass of the 
spacecraft is much smaller than the mass 
of the particles and that their original 
common center of gravity were situated 
at an r larger than the center of gravity 
of the spacecraft. Then the particles 
would move more slowly than the space- 
craft and would hit its backside wall, with 
the result that the spacecraft would be 
displaced outward." The last word should 
be replaced by "inward," because the 

spacecraft loses energy in the collisions. 
As a consequence, its center of gravity 
moves not toward the center of gravity 
of the particles but away from it. 

In general, then, collisions tend to dis- 
perse the radii rather than to bring them 
together. If, as suggested by Alfv6n, the 
"apples in a spacecraft" model is rele- 
vant to the hypothesis on the formation 
of "jet streams," then it appears to be in 
fact an argument against this hypothesis. 

MICHEL HENON 
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06300 Nice, France 
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Mutual collisions in a stream of parti- 
cles moving approximately in parallel 
render the stream increasingly more dif- 
fuse. It was earlier believed that this ten- 
dency toward diffusion applied also to a 
stream of particles in Kepler orbits. This 
is not necessarily true because under 
certain conditions mutual collisions lead 
to a decrease in the spread of the orbital 
parameters, which may lead to the for- 
mation of a "jet stream." According to 
Baxter and Thompson (1), a stream of 
particles in Kepler orbits may exhibit a 
"negative diffusion." 

When this point was clarified, I 
thought that the model criticized by He- 
non (2) would be useful as a simple ped- 
agogical illustration, not observing that 
the collisions between the "apples" and 
the spacecraft give the correct angular 
momentum only if the spacecraft spins 
with the angular velocity -2wk. As the 
assumption of such a spin makes the 
model too complicated to be of any ped- 
agogical value, I agree with Henon that 
this model should not be used. However, 
Henon's intimation that the model con- 
stitutes an argument against the jet 
stream hypothesis is not valid because 
the motivation for the jet stream concept 
has nothing to do with this model. 

This does not mean that the theory of 

jet streams is in very good order. A num- 
ber of numerical experiments have been 
done by Trulsen (3), Ip (4), and the He- 
non-Brahic group (5). These experiments 
show that mutual collisions in a stream 
with an original distribution in the semi- 
major axis a, the eccentricity e, and the 
inclination i reduce the spread in i and e 
to zero but give only a limited decrease 
in the spread in a. The spread in a is not 
reduced to zero because the particles 
very rapidly reach orbits with e = 0, 
and, when they have done so, the de- 
crease in a stops because the particles do 
not interact at all. However, this nonin- 
teraction is not fatal to the existence of 
jet streams because the model is too 
idealized. In reality, orbits with e = 0 do 
not exist because of perturbations, and, 
if the model is worked out under the con- 
dition that e should never be exactly ze- 
ro, the particles will continue to interact, 
thus decreasing the spread in a which 
leads to the formation of a jet stream (4). 
Another effect produces a similar result: 
when applied to the cosmogonic prob- 
lem, the injection of particles with e = /3 
should occur during a long time, which 
means that e continues to have finite val- 
ues (6). 

Hence there are good reasons for be- 
lieving that jet streams were important as 
an intermediate step in the formation of 
planets, satellites, and asteroids, and jet 
streams may also have possible appli- 
cations to the origin of comets (7). On 
the other hand, it is not yet clear whether 
the present density in interplanetary 
space is sufficient to produce jet streams. 
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